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Foreword

Stochastic discrete event systems (SDES) arise frequently in the design, analy-
sis, and optimization of man-made engineered systems. The dominant dynam-
ics of such systems tend to be modeled not through the application of physical
laws but through the specification of protocols, algorithms, and managerial
rules. The key role of such protocols, algorithms, and rules as a determin-
ing factor in the performance of engineered systems has become increasingly
evident as technology has advanced over the last half century.

Opportunities for utilizing SDES as a design tool clearly arise in virtu-
ally all settings in which software finds application, because software often is
generated in the course of formally specifying the algorithms and protocols
to be followed by a man-made system. But SDES also have become a stan-
dard means of evaluating managerial policies and rules arising in higher-level
systems in which human beings interact with technology, as in the setting of
call centers, large manufacturing systems, and corporate supply chains. Given
the importance of SDES, the development of a systematic and comprehen-
sive mathematical and computational toolset for the specification and design
of such systems has become a key issue that has attracted a great deal of
attention within the engineering community.

The last twenty years has seen significant progress in developing and build-
ing good computational tools capable of creating rich model-based represen-
tations of such SDES, with sophisticated associated mathematical methods
capable of analyzing both performance and optimizing across designs. A par-
ticular challenge in the SDES context is that because the dynamics are algo-
rithmically defined (as opposed to being governed, for example, by physical
laws), the spectrum of mathematical problem structures that can be gener-
ated in the SDES setting is enormously varied. As a consequence, there are
significant challenges that arise in building computational solvers that can
fully leverage the problem structure associated with a particular application.
Nevertheless, as indicated above, much progress has been made in developing
model-based representations that can form the basis for effective and effi-
cient computation. This computational toolset is capable of analyzing both
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the performance of a given design and optimizing across designs. Because so
many such systems are subject to random variation, such a toolset should be
capable of systematically incorporating and analyzing the associated stochas-
tic effects. It comes as no surprise that the solution methodology for SDES
includes both methods that reduce the necessary equations to be solved to
systems that can be computed via conventional numerical analysis methods
(as in the setting of Markov jump process representations of a SDES) and
methods based on the use of stochastic simulation (in which trajectories of
the system are simulated by drawing random numbers).

This monograph by Armin Zimmermann skillfully describes the key ideas
and methods that have developed within this discipline, starting first with var-
ious model-based representational tools and showing that they share a com-
mon modeling worldview. Both simulation-based and non simulation-based
solution methodologies for SDES are then explored, including a discussion of
the key ideas that arise in the use of iterative approximations in this setting.
The book also includes an ambitious discussion of some of the methods avail-
able for numerical optimization of SDES, and offers some carefully worked-out
examples that illustrate the power of these ideas.

To those of us who work within the SDES discipline and to the larger
community that bases their interest in SDES on the potential application of
these ideas to domain-specific modeling problems, this monograph serves as
a welcome addition to the literature.

Stanford University, USA Peter W. Glynn
Thomas Ford Professor of Engineering



Preface

The behavior of many technical systems that are increasingly important in our
every-day life can be described by discrete states and state-changing events.
Discrete event systems follow this view of a system, and have gained a lot of
interest in the past due to their wide range of applicability. Numerous model
classes, analysis algorithms as well as software tools have been developed and
successfully put into practice. Activity delays and probabilities of decisions
are added to evaluate quantitative issues like performance and dependability.
Stochastic discrete event systems (SDES) capture the consequential random-
ness in choices and over time.

There are numerous challenges for an engineer throughout the life span
of a technical system. Planning, documentation, functional and quantitative
design as well as control are examples. Complexity and size of the considered
systems requires supporting tools for these tasks, which have been developed
over the last decades with the enormous increase in available computing power.

The starting point is a formal description, requiring to describe the sys-
tem of interest in a model. Numerous well-known model classes are available
today, including queuing networks, Petri nets and automata. Their descrip-
tional power allows to capture stochastic delays as well as random choices.
Every one of them represents a different way of describing a SDES with indi-
vidual abstraction level. The dominant theme of this work is that they share
a common underlying view of a system, and can thus be treated alike.

This text is about modeling with and quantitative evaluation of stochastic
discrete event systems. An abstract model class for SDES is presented as a
pivotal point. Several important model classes are presented together with
their formal translation into the abstract model class. Standard and recently
developed algorithms for the performance evaluation, optimization and control
of SDES are presented in the context of the abstract model class afterwards.
The final part comprises some nontrivial examples from different application
areas, and demonstrates the application of the presented techniques.
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1

Introduction

Engineers and designers of technical systems have to deal with increasingly
complex projects. The design objects may contain diverse mechatronic ele-
ments and distributed components. Embedded control computers add to this
complexity, making the overall system design a very hard task. Unplanned in-
fluences like failures and concurrency as well as synchronization issues increase
the challenge. Whatever application field we look at – telecommunication,
logistics, computers, transportation, work flows, information systems, or pro-
duction – the number of involved parts and their connections make it impos-
sible to oversee the global effects of local decisions.

On the other hand, verification of a functionally correct design as well as
the prediction of system performance and dependability is becoming increas-
ingly important due to the tremendous resources that are spent during the
design and life time of a technical system. Model-based evaluation of technical
systems has turned out to be a powerful and inexpensive way of predicting
properties before the actual implementation. Costly design changes can thus
be minimized, and the planning time is reduced. A model is a simplified rep-
resentation of a real-life system, independent of whether it already exists or
is only envisioned. In contrast to a fixed model like for a building of an archi-
tect, we are mainly interested in the behavior of a technical system design and
models that describe system dynamics. The overall behavior is not known in
advance as opposed to measuring a prototype system. We can only describe
the planned structure, architecture, connections, local behavior of a system,
etc. The global behavior of such a system must then be predicted with an
evaluation method. Models are thus required to be interpretable such that
their dynamics are clearly defined.

Modeling is a key feature to understand complex systems in all application
areas, just like a mathematical formula describing a natural phenomenon. We
accept it as being correct as long as it “explains” the effects that we observe,
either until a counter example has been found or there is a more elegant
way of description. Modeling is very much like programming on an abstract
level: the modeler needs to know the basic descriptional elements, there are



2 1 Introduction

state variables as well as methods that change them, as well as structural
modules and behavioral aspects. A model as well as a program is based on an
abstraction of a real system. The decision of the right abstraction level as well
as the correct boundary of considerations are important and require human
skills and experience. A deep understanding of the real system is necessary
to create a correct model. Programming is understanding (Kristen Nygaard)
applies to modeling alike. Because of its importance and the requirement of
background knowledge of the application area, modeling is a core discipline
of many engineering and natural sciences.

A system is always in some kind of state and independently of what we
are interested in during the system design, it will depend on the state and its
trajectory over time. A general way of describing system behavior thus defines
the structure of a state and when and how state-changing activities influence
it. Passage of time as well as state values may be continuous, assume only
discrete values or be a hybrid mixture of both. The state information is con-
tinuous in natural environments that follow the laws of nature as in physics,
chemistry, or biology. State changes can then be described by differential equa-
tions, which is the subject of systems and control engineering.

1.1 Stochastic Discrete Event Systems

The nature of many man-made technical systems differs from that. Structure
and control rules designed artificially, and their dynamic behavior is triggered
by discrete events. This text focuses on models where system states and events
are discrete. This is useful in many application areas mentioned earlier, where
individual entities (customers, vehicles, communication packets) and their dis-
crete states and locations are the subject of analysis. Other applications allow
the discretization of continuous values.

Systems and their models are dynamic by changing their state over time,
which passes independently and out of our control. Activities proceed if their
preconditions are met, until their finishing events happen after some delay.
This leads to subsequent states, new activities, and corresponding events fol-
lowing the causal dependencies. Time is nature’s way of setting the speed of
causality. In our understanding, delays in a system are related to time spans
that need to pass during an ongoing activity. Time is therefore associated with
activities.

The description of a discrete event system on the causal level is already
sufficient to answer qualitative questions, such as if a certain (dangerous)
state can ever be reached or if a control system may deadlock. Corresponding
analysis techniques are often based on the model structure and do not require
to visit every state of the system individually. This makes them efficient and
leads to statements about every theoretically possible system behavior. A good
part of the literature on discrete event models and analysis techniques deals
with these kinds of problems. It is, however, out of the scope of this text, which
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concentrates on quantitative properties. A model needs to describe additional
properties of a system in this case, which are described later.

Environment and inner parts of a model are subject to uncertainty. This
is independent of the question whether there is true randomness in nature
or not. The reason for this lies in the process of modeling already: what-
ever abstraction level is chosen, there is always some level of detail hidden
from our view, which results in events that are unpredictable from within
the model. In many cases it is possible to create a more detailed model, but
this might lead to a worse tradeoff between model complexity and analytical
tractability.

One source of unpredictable behavior are conflicts between activities. They
occur if concurrently running activities change the system state such that oth-
ers are disabled. The outcome of its solution may not be known inside a model.
Probabilistic choices are an appropriate way of describing these situations, in
which it is not known what activity will happen. Another level of uncertainty
is introduced because the exact time of an event is unknown. Delays need to
be described by probability distribution functions to describe their stochastic
nature. Spontaneous failures and human interaction are examples.

Stochastic delays and probabilities of decisions are a prerequisite for quan-
titative modeling and evaluation of systems. Together with the causal relation-
ships between states and events, the dynamic behavior of a stochastic discrete
event system (SDES) model can be described by a stochastic process. It would,
however, be a tedious task for complex applications to specify a model at the
level of abstraction of this process. The traditional way of finding an exact
mathematical description is restricted to simple models, and often requires a
new model for every design change.

Many model classes with a higher level of abstraction have been developed
inside the SDES family, for instance, stochastic automata, queuing models,
and process algebras. They do restrict the modeling power in different ways,
but have the significant advantage of easier use and understanding. There are
advantages and disadvantages for the different levels of abstraction just like
for high-level programming languages vs. assembler programming. The choice
of a good model class for a system design depends on the necessary complexity
and available analysis techniques. One of the reasons for this is the existence
of more powerful evaluation methods for less complex model classes.

The first part of this text describes a selection of prominent model classes
with increasing complexity. Modeling a discrete event system with a stochastic
automaton works well as long as the number of states remains manageable.
Typical modular configurations of technical systems can be handled with net-
works of automata. However, more complex systems lead to problems. A sys-
tem with K customers can for instance not be parameterized on the model
level, because the number of automata states depends on the parameter K.
Queuing models are able to describe systems with resource allocation and
sequences of operations on a much higher level. If synchronizations need to
be captured in addition to that, Petri nets can be the right choice. Colored
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Petri nets should be chosen if different physical objects with attribute values
need to be treated individually in the model.

Research in the field of stochastic discrete event systems goes into many
directions: model classes and their theoretical foundation, systematic ways of
model construction, input data derivation, graphical representation of mod-
els, their states and dynamic behavior, analysis tools for the prediction and
optimization of a variety of qualitative and quantitative properties, interfaces
between models, and real world, to name a few. Several scientific disciplines
contribute to this area, and most problems can only be solved interdisci-
plinary. Mathematics, statistics, and operations research obviously plays a ma-
jor role in the formal foundations and analysis techniques. Computer science
adds formal and numerical methods as well as the hard- and software tools
for their implementation. Numerous application areas from engineering and
others are necessary to understand and properly describe systems and design
problems.

1.2 Applications and Goals of Modeling

A SDES model of a planned system requires additional work for system un-
derstanding, parameter extraction, model construction, and debugging as well
as an experienced modeler. This investment pays off only because the model
can be used in the design process as follows.

A formal model is unambiguous and can thus be used for documenta-
tion together with its graphical representation (provided that it has one).
Functional requirements as well as rough system architecture and behavior are
modeled and evaluated during the early design stages. Visualization of model
behavior and verification of qualitative properties help to understand the sys-
tem better and to find errors. The model is enhanced by further details to
describe the resources. Quantitative evaluation predicts the performance and
dependability, and an optimization of design parameters is possible. Control
rules may be automatically derived and checked using the model. A control
interpretation of the model allows to directly control a real system and to
check the start-up phase. The current behavior and state of a running system
may be visualized for a supervision.

Strategic and operational questions can be answered easier and less costly
based on the model. Figure 1.1 sketches an iterative design process based on
model and evaluation techniques. The system is described with a model class,
and quantitative measures are defined to express design goals. An evaluation
method computes the values of the measures for the current system model, to
check if the designed system behaves as required. If it does not, the model is
changed and evaluated again. This process is iteratively continued until the
model fulfills the goals. The main advantage of using a model instead of a real
system in this context is the time and money that would have to be spent on
prototypes otherwise.
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Fig. 1.1. Model-based iterative design

The underlying idea of model evaluation during design has been nicely
captured in the following quotation. Although meant for an architect’s model
of a building, it touches all elements of a model-based design.

When we mean to build,
We first survey the plot, then draw the model,
And when we see the figure of the house,
Then must we rate the cost of the erection,
Which if we find outweighs ability,
What do we then but draw anew the model
In fewer offices, or at least desist
To build at all?

Shakespeare, King Henry IV, Part II

1.3 Overview of Topics

The text in hand aims at a presentation of stochastic discrete event sys-
tems along the steps of their use. Its organization thus follows the stages of
model-based design and operation of technical systems: Part I covers model-
ing, Part II describes use of models, mostly containing evaluation methods.
The necessary software tool support is covered as well. A set of actual applica-
tion examples, their models, and usage of evaluation techniques is contained
in Part III. An abstract model class SDES is introduced as an embracing
framework for individual modeling classes. Evaluation techniques based on
this description are therefore applicable to any member of the SDES family
of stochastic discrete event systems.

There are numerous modeling techniques that could not be considered in
this text to limit its space. Among them are message sequence charts (MSC),
event-driven process chains (EPC), specification languages, hybrid models,
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and process algebras to name some of them. Model classes were selected only if
they are based on discrete states and events, possess a graphical representation
and a clear formal semantics. Stochastic colored Petri nets probably represent
the most complex and powerful example of this model class today. Other
classes were selected because they paved the ground in the development of
more complex classes on the way towards colored Petri nets.

Part I: Modeling

Chapters inside the modeling and evaluation parts are ordered following an
increasing complexity of the covered material, if possible. The modeling part
describes different modeling classes as well as their integration into one uni-
fied modeling framework. It starts with Chap. 2 covering an abstract model
class for SDES, into which all later example classes are embedded. The model
class SDES is not a real one; it serves as an abstraction of classes like Petri
nets or automata instead and does not have a graphical representation. Static
model elements of an SDES are explained and defined. The dynamic behavior
that follows from such a model is described, resulting in a definition of the
underlying stochastic process by construction. The specification of quantita-
tive results by reward measures and their relation to the stochastic process is
covered subsequently.

The individual model classes covered are automata (Chap. 3 with a digres-
sion on UML Statecharts and their transformation into Petri nets), queuing
models (Chap. 4), simple Petri nets (with uncolored tokens; Chap. 5), and col-
ored Petri nets (Chap. 6), covering variants with and without arc variables.
For each modeling method an informal introduction of model elements, their
use, and graphical appearance is given with toy examples. The model classes
are formally defined and their relation to the general SDES model is specified
subsequently. Specific details on the dynamic behavior of model classes are
given if necessary, although the definition of the dynamic behavior of an SDES
is sufficient in the general case after the interpretation and their relation to
SDES. The specification of quantitative measures is explained. Final notes in
each chapter point at related text parts as well as a selection of significant
references.

Part II: Evaluation

Part II is devoted to methods that make use of the models, most impor-
tantly for the derivation of quantitative measures. Formulas and algorithms
are given to avoid a purely theoretical coverage. Wherever possible, the pre-
sented methods take as input an SDES model, which makes them applicable
to models from a wide variety of descriptions. Some of the presented meth-
ods are restricted to specific model classes, because they require structural
information from the model class, which might not be available in a different
representation.
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The evaluation part begins by recalling some of the most widely used
standard methods for the quantitative evaluation of stochastic discrete event
models in Chap. 7, and presents their implementation for the abstract SDES
model class. Different simulation and numerical analysis approaches are cov-
ered. The subsequent chapters of Part II are based on previous results of
the author and coworkers, which are presented within the SDES environment
whenever possible.

Chapter 8 describes an approximative numerical evaluation method for
model classes of stochastic Petri nets. It aims at relaxing the state space
explosion problem, which disables the numerical analysis of models with a
huge state space. Models are cut into parts and structurally simplified. An it-
erative technique computes an approximation of quantitative measures based
on the simplified model parts. The tradeoff between result accuracy, remaining
state space size, and computation speed makes this technique an alternative
to simulation and standard numerical analysis techniques.

The subsequent Chap. 9 covers two additional simulation methods, which
are much more efficient than standard techniques for certain problem settings.
One possibility to get results with sufficient statistical confidence faster is par-
allel simulation with a distribution of model parts over individual nodes. The
complex semantics of general SDES models, however, forbid the application
of the usual optimistic time-warp algorithms. To capture the causal relation-
ships of model elements correctly, an appropriate model time management is
proposed. Fine-grain partitioning and automatic heuristic load balancing are
possible with this technique. Another well-known problem of simulation algo-
rithms appears when rare events have a significant impact on the quantitative
results. The RESTART method efficiently speeds up the estimation of such
performance measures. It is applied to the SDES model environment in the
second part of Chap. 9.

Quantitative evaluation of a model is often only one step of a what-if
analysis, which aims at a selection of a good parameter setting of a planned
system. Automatic optimization methods can take this burden from the de-
signer. Because of the inherent complexity of the considered models, only
indirect optimization based on an evaluation technique can be used. This
does, however, lead to an unacceptable computational complexity in many
cases. Chapter 10 presents a technique that speeds up such an optimization
by two orders of magnitude for typical examples. A heuristic optimization
scheme is executed in two phases, where the first one uses a fast approxima-
tion to identify a promising region for the later thorough optimization phase.
The method uses results for the bounds of performance measures of Petri nets,
which can be efficiently obtained from the model structure.

Structure and behavior of discrete event systems make it easy to use them
for the direct control of a modeled system. It is moreover a natural step to
reuse a model from the design and performance optimization stages for this
operational step as well. Errors might otherwise be introduced if different
models or software tools are used. Chapter 11 shows how SDES models can
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be used to control a technical system directly. A corresponding interpretation
of the SDES model elements is given after an intuitive Petri net example.

Some notes on software tool support for the creation and use of SDES
models are given in Chap. 12. It describes the tool TimeNET, which has been
used for the application examples and is being developed by the group of the
author.

Part III: Applications

Four case studies are presented as application examples in Part III, each using
different modeling methods and evaluation techniques. They are ordered in
the same way as the corresponding models in Part I, and cover a broad range
of the previous theoretical and methodological parts of the text. Despite some
individual differences in the structure, each application chapter presents and
explains the application example and design goals or steps. A model of the
system is created using a model class out of Part I, which is analyzed or
otherwise used subsequently with the methods from Part II. Results for the
application examples underline applicability and efficiency of the methods.
Most examples are adapted versions of real-life industrial problems.

Optimization of a manufacturing system example is covered in Chap. 13.
A generalized stochastic Petri net is used for the modeling, and the technique
presented in Chap. 10 is applied to obtain near-optimal parameter settings.
One of the subsections explains in detail how typical optimization functions for
manufacturing systems can be specified with Petri net performance measures.
An overview of types of manufacturing systems and design problems is given
in that section as well. Numerical results for the fast approximation technique
and the overall optimization approach are presented.

A performability evaluation of the future European train control system
ETCS is the topic of Chap. 14. Train operation is briefly explained both for
the traditional fixed block system vs. the planned moving block scheme. A
model of train operation and communication link is stepwise built using
extended deterministic and stochastic Petri nets. An alternative specifica-
tion of the communication link behavior is presented with a UML Statechart
model, which is transformed into an equivalent Petri net with the algorithm of
Sect. 3.5. Numerical analysis leads to a condensed link failure model, which is
added to the train operation model for a complete description of the problem.
The resulting model can not be evaluated in practice using standard numeri-
cal analysis or simulation methods. Rare-event simulation allows to efficiently
obtain performance results. The tradeoff between communication link depend-
ability and minimum train distance is formally captured and evaluated.

Chapter 15 shows how a supply chain is designed based on a model to
achieve certain performance goals. Colored Petri nets allow the natural spec-
ification of its complex operations. The model is presented in a modular and
hierarchical way for the example, covering the behavior of customers, dealer-
ship, plant, and transport logistics in the car maker example setting. The time
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between order and delivery of a vehicle is analyzed. Several supply chain design
changes are implemented in the model and evaluated. As a result, proposals
for a more efficient supply chain organization are derived and their impact on
the delivery time is quantified.

A physical model of a multimachine production cell is considered in
Chap. 16. The individual machines and other resources are modeled with a
hierarchical variable-free colored Petri net. It is briefly shown how workplan-
specific information can be integrated into the structural model using results
that were developed earlier [339, 354, 361]. The throughput of the produc-
tion cell is analyzed with the iterative approximation technique of Chap. 8.
Accuracy of results and computational efforts are compared with results ob-
tained using standard numerical analysis and simulation techniques. Finally,
the model is enhanced by a control interpretation following Chap. 11, and is
used with the software tool TimeNET to directly control the production cell.

Concluding Parts and Related Work

Concluding remarks as well as an outlook to future research directions are
given in the final summary.

The notes at the end of most chapters contain pointers to related work.
For the modeling part the most significant references include [9, 42, 168] for
automata, [42, 149, 207] for queuing models, [4, 130] for stochastic Petri nets,
and [188] for Colored Petri nets. The idea of an abstract framework for dif-
ferent discrete event model classes has been implemented in the Möbius tool
and described in [81, 82].

The definition of the stochastic process and of quantitative measures of
an SDES uses work presented in [67, 130, 143, 284]. Numerical performance
evaluation techniques are described in [4,59] for Markovian models and more
general ones in [130]. The estimation of quantitative measures is also pos-
sible by standard simulation techniques [105, 150, 219], iterative approxima-
tion [108,109,112,260], fine-grain parallel simulation [210,211], or acceleration
techniques [321] among others. Near-optimal parameter sets for selected SDES
models can be efficiently found with the techniques described in [351–353], and
the control interpretation is based on [336,342,344].

1.4 Notation and Selected Background

Throughout the book, important terms are set in bold when they are defined
or appear for the first time. Issues of lesser importance for the presentation
are emphasized, while model elements are set in typewriter style. The used
symbols are listed and explained starting in p. 345. Algorithms are set using
a format that is introduced together with the first algorithm in p. 135.

The text assumes that the reader is familiar with probability theory and
stochastic processes. Numerous textbooks cover this field, including [31, 42,
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71, 150, 245, 305]. Without trying to be exhaustive, some issues significant to
the text are briefly recalled.

Random Experiments

Uncertainty in stochastic discrete event systems is expressed in the selection of
enabled or executed activities in a certain state (if there has to be a selection),
and in the selection of a possibly random activity delay. Any of these decisions
is called a random experiment in probability theory, because they lead to a
result that is previously unknown. The set of all possible outcomes is called
the sample space S of an experiment. Random experiments are commonly
characterized by either having a finite or countably infinite sample space, in
which case they are called discrete or otherwise continuous.

An event E (in the sense of probability theory) is a subset of the sample
space S (E ⊆ S). We may form corresponding subsets of interest out of S to
obtain an event space E, that must satisfy two conditions. The complement
E of an event E is defined as E = S \E and must be an event as well: E ∈ E.
Second, for any set of events E1, E2, . . ., the union must be an event as well:⋃

i Ei ∈ E.
A probability P{E} is associated with every event E to measures its rel-

ative likelihood. One interpretation is the following. If we would conduct
the underlying experiment infinitely often, the ratio between the number of
results in E and the overall number of experiments will converge to P{E}.
The axiomatic definition of a probability function P{·} requires

∀E ∈ E : P{E} ≥ 0
P{S} = 1

∀E1, E2 ∈ E, E1 ∩ E2 = ∅ : P{E1 ∪ E2} = P{E1} + P{E2}

A probability space is then a tuple (S, E, P) of sample space, event space, and
probability function.1

The conditional probability P{E1 | E2} measures the probability of an
event E1 under the precondition that another event E2 has happened. This
restricts the sample space of the experiment to E2 and leads to the definition
P{E1 | E2} = P{E1 ∩ E2} /P{E2}. If the previous occurrence of E2 does not
change P{E1}, obviously P{E1 | E2} = P{E1}, and we say that the two events
are independent.

An important special case of a random experiment has two outcomes,
which are often interpreted as success and failure. Then S = {success, failure},
and E = {∅, {success}, {failure}, {success, failure}}. We consider a probability
space in which P{success} = p and P{failure} = q (obviously p+q = 1). Such a
random experiment is called a Bernoulli trial, and a sequence of independent

1 More rigid treatment requires E to be a measurable subset of the whole set of
events.
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trials is an adequate model for many processes of stochastic discrete event
systems. Of special interest are the probability of k successes in a sequence of
n trials as well as the probability that k is the first successful trial.

P{k successes in n trials} =
(

n
k

)

pkqn−k

P{k is the first success} = qk−1p

Random Variables and Probability Distribution Functions

Instead of taking the elements of the sample space as results of a random
experiment, it is more convenient for a mathematical treatment to assign
real-valued numbers to them. Such a mapping X : S → R is called a random
variable on a sample space S. Consider the relation between elements of a
discrete sample space for which the random variable results in the same value.
This is an equivalence relation, which defines a partition of the sample space
resulting in an event space. The set of sample space elements with equal
random variable is required to be an event for a discrete random variable.

∀x ∈ R : {E ∈ S | X(E) = x} ∈ E

The probability of the discrete random variable to assume a certain value x
is written as P{X = x}.

Things are a bit different for non-denumerable sample spaces S, i.e., when
the random variable is continuous. For such a random variable there are
subsets of the sample space for which we cannot define a reasonable probability
value. It is thus only required that the set of sample space elements for which
the random variable returns a value less or equal than a certain x is an event,
which then has a well-defined probability. A (continuous) random variable is
thus a function X for which

∀x ∈ R : {E ∈ S | X(E) ≤ x} ∈ E

The (cumulative) distribution function FX of a random variable X
returns the probability that the random variable assumes a value less than or
equal to a real x.

∀x ∈ R : FX(x) = P{X ≤ x}
The probability density function fX of a random variable X is given by

the derivative of FX if it exists.

∀x ∈ R : fX(x) =
d
dx

FX(x) and FX(x) =
∫ x

−∞
fX(y) dy

For a proper FX holds limx→∞ FX = 1. The distribution function is mono-
tonic, which is similar to a nonnegative density function. Continuous random
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variables are used in this text to describe random delays of activities. Delays
are obviously greater than or equal to zero, thus the support of the distribu-
tion function is a subset of [0,∞). We define the set of nonnegative probability
distribution functions F+ as

F+ = {FX | ∀x ∈ R : x < 0 −→ FX(x) = 0}

Discrete and continuous delays as well as mixed ones can be uniformly
described with generalized distributions and density functions. A discrete
probability mass at a point x leads to a step in the distribution function
and a Dirac impulse in the density function. The step function s(x) is defined
as

∀x ∈ R : s(x) =

{
0 if x ≤ 0
1 otherwise

The Dirac impulse Δ can be formally defined by a rectangular function with
constant area of one, for which the length of the basis is taken to zero. Δ(x)
denotes a function with an area of size one at 0, and represents a generalized
derivative of the step function. Step function and Dirac impulse can both be
shifted to any b ∈ R and multiplied by a a ∈ R

+ to be combined with other
parts of a probability distribution or density function.

d
dx

(
as(x − b)

)
= aΔ(x − b) and

∫ x

−∞
aΔ(y − b) dy = as(x − b)

Distribution functions of discrete random variables can therefore be cap-
tured by a weighted sum of step functions. Their distribution is otherwise
described by a probability mass function instead of a density function.

For the later specification of delays in a stochastic discrete event system
we define subsets of the set of all allowed delay distributions F+.

Zero or immediate delays are allowed as a special case. The set of
immediate probability “distribution” functions F im is defined accordingly;
all other are called timed, and required to have no probability mass at zero
(FX(0) = 0).

F im = {FX ∈ F+ | FX(0) = 1}

Important cases of timed delay distributions include the following. Expo-
nential distributions have the form

Fexp = {FX ∈ F+ | ∃λ ∈ R, ∀x ∈ R
+ : FX(x) = 1 − e−λx}

and the density is fexp(x) = λe−λx.
The deterministic “distribution” always results in a fixed value τ .

Fdet = {FX ∈ F+ | ∃τ ∈ R
+ : FX(x) = s(x − τ)}

Its density is given by Δ(x − τ).
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A class of expolynomial distributions is allowed for the numerical analysis
of stochastic discrete event systems following [130] and denoted by Fgen .
Such a function is a weighted sum of n expressions in the form xme−λx.
The weighting factor as well as a truncated support of each expression is
obtained with a rectangular distribution R(a, b] = s(x − b) − s(x − a). Thus
each FX ∈ Fgen has the form

∀FX ∈ Fgen : FX(x) =
n∑

i=1

xmie−λixR(ai, bi]

with mi ∈ N, λi ∈ R
0+, and ai, bi ∈ R

+.
The geometric distribution is discrete and counts the number of Bernoulli

trials until the first success. If the time between two trials is denoted by Δt
and the individual success probability by p,

∀x ∈ R
+ : F geo

X (x) = 1 − (1 − p)�x/Δt�

An important aspect of some distributions is the memoryless property.
Consider a random delay X after a time t, which has not yet elapsed (i.e., it
is known that X > t). How is the remaining delay X ′ = X − t distributed?
If the distribution of the conditional probability that X ′ ≤ y is independent
of t and thus identical to the original distribution, we say it is memoryless.
It can be shown that the only memoryless distributions are the exponential
distribution in continuous time and the geometric one in discrete time. They
are of special importance because random effects like failures with a constant
rate can be modeled using them and due to their analytical simplicity.

Stochastic Processes

When we observe the behavior of a stochastic discrete event system over time,
there will be a (usually random) sequence of states and state changes. The
mathematical abstraction for this is a stochastic process, which is formally a
collection of random variables {X(t) | t ∈ T } that are indexed by the time t.
The parameter t may have a different interpretation in other environments.
Index set T denotes the set of time instants of observation. The set of possible
results of X(t) is called state space of the process (a subset of R), and each
of its values corresponds to a state.

Stochastic processes are characterized by the state space and the index
set T . If the state space is discrete (countable), the states can be enumerated
with natural numbers and the process is a discrete-state process or simply a
chain. T is then usually taken as the set of natural numbers N. Otherwise, it is
called a continuous-state process. Depending on the index set T the process
is considered to be discrete-time or continuous-time. Four combinations are
obviously possible. In our setting of stochastic discrete event systems, we are
interested in systems where the flow of time is continuous (T = R

0+) and the
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state space is discrete. The stochastic process is thus a continuous-time chain
and each X(t) is a discrete random variable.

A discrete-state stochastic process {X(t) | t ∈ T } is called Markov chain
if its future behavior at time t depends only on the state at t.

P{X(tk+1) = nk+1 | X(tk) = nk, . . . , X(t0) = n0} =
P{X(tk+1) = nk+1 | X(tk) = nk}

It is easier to analyze than more general processes because information about
the past does not need to be considered for the future behavior.

Markov chains can be considered in discrete or continuous time, and are
then called discrete-time Markov chain (DTMC) or continuous-time Markov
chain (CTMC).

From the memoryless property of a Markov process it immediately follows
that all inter-event times must be exponentially (CTMC) or geometrically
(DTMC) distributed. Different relaxations allow more general times. Exam-
ples are semi-Markov processes with arbitrary distributions but solely state-
dependent state transitions and renewal processes that count events with
arbitrary but independent and identically distributed interevent times.

A generalized semi-Markov process (GSMP) allows arbitrary interevent
times like a semi-Markov process. The Markov property of state transitions
depending only on the current state is achieved by encoding the remaining
delays of activities with nonmemoryless delay distributions in the state, which
then has a discrete part (the system states) and a continuous part that ac-
counts for the times of running activities.

For further details of stochastic processes the reader is referred to the
literature mentioned earlier in this section.
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A Unified Description for Stochastic Discrete
Event Systems

Various discrete event model classes with stochastic extensions have been
proposed, which all share some common characteristics. Many of the algo-
rithms that have been developed for one or the other class are in principal
applicable to all or most of them. This requires some kind of abstract de-
scription for stochastic discrete event systems, which this section aims at.
We will use the term SDES to refer to this unified description in the fol-
lowing. Different model classes are defined in terms of SDES later on in this
part. Evaluation algorithms that use the SDES description as their input are
explained in Part II. The definition of SDES thus marks some kind of inter-
face between model description and model evaluation. The level of detail of
the SDES description was hence set such that algorithmic parts should only
be required in the evaluation algorithms, while the static model descriptions
are captured in the SDES definition. From an implementation-oriented point
of view one can also think of the SDES definition as a blueprint for an ab-
stract data type with virtual elements, which are instantiated for a certain
model class by substituting the attributes with net-class dependent values and
functions.

The goal of the SDES definition is also to underline the similarity of the
different model classes in stochastic discrete event systems. It should be useful
for gaining insights into this area, requiring it to be understandable. The def-
inition therefore refrains from being able to capture all details of every known
model class, the restrictions are pointed out later. However, this is only done
for simplicity of description, because those additional elements could be put
into the SDES description technically simple. Popular model classes like au-
tomata, queuing networks, and Petri nets of different kinds (with stochastic
extensions) are subclasses of stochastic discrete event systems and can be
translated into the introduced SDES description. The future will see more
model classes of stochastic discrete event systems coming up, requiring a uni-
fied description to be flexible enough to capture the properties of these model
classes as well.
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After an informal description of the common properties of stochastic dis-
crete-event systems in Sect. 2.1, the SDES model definition and its underlying
behavior are formally introduced in Sects. 2.2 and 2.3. A simplified process
is defined as an abstraction of the full stochastic process. The type of the
processes depending on the model elements are mentioned and restrictions are
discussed. Section 2.4 describes how quantitative measures can be specified for
a model and their formal relationship to the stochastic process. The chapter
ends with some notes on related work.

2.1 Informal Description

A discrete event system is a system which is in a state during some time
interval, after which an atomic event might happen that changes the state of
the system immediately. The state does not change between two subsequent
events, which is the main difference to continuous dynamic models where
the change in time can for instance be described by differential equations.
A system is usually composed of parts that contribute to the set of possible
states with their local states. The states need to be captured, which is done by
state variables. A system state is then characterized by the association of a
certain value to each of the state variables. State variables usually correspond
to passive elements in the model classes, like places in Petri nets or queues in
queuing systems. The set of theoretically possible values of a state variable is
reflected by its associated sort. This sort might be quite complex, think, e.g.,
of multisets of tokens with sophisticated attributes in a colored Petri net.

Discrete event systems are studied because they capture both static and
dynamic information, which makes them useful for evaluation of the modeled
system’s behavior. The behavior is characterized by the visited states and the
events that lead from one state to the next. Events change the system state
by altering state variable values. All events and state changes are the result of
active elements inside a discrete event system, which we will call actions in the
following. Actions might correspond to a transition in a Petri net model class
or a server of a queuing system. They describe possible activities that might
become enabled, start, take some time to complete, and are finally executed
resulting in an event with its corresponding state change. The dynamics of
an action depend on the current system state, i.e., the state variable values.
An action might for instance only be enabled if one state variable is in a certain
range. Interaction and causal dependency between actions is thus possible
because their execution depends on state variables and changes them as well.

In many systems there are actions that actually model classes of state
changes, i.e., which lead to different possible activities for one state during
the evolution of the dynamic behavior. An example is transitions in colored
Petri nets. Hence it is not sufficient to talk of actions which are enabled or not;
we need to compute the set of enabled modes of the action for a state, and to
decide which one may be executed. We thus distinguish between actions and
action modes. One of the latter corresponds to a specific enabling instance



2.2 Static Model Definition 19

of an action. A pair of an action together with one of its action modes is
called an action variant. This distinction is not necessary for model classes
without this property, like Automata. In this simple case there is exactly one
action mode if the action is enabled. We will therefore use the term action for
both terms in this case. During the evolution of the dynamics of an SDES it
might be necessary for the correct computation to store internal states of an
action mode. An evaluation algorithm then works on an extended model state
that includes both the values of state variables and internal states of actions.
This issue is covered in detail together with the definition of the dynamics
later on.

During an actual evaluation of the dynamic behavior of an SDES there are
several model classes in which the same action (or modes of it) can be enabled
concurrently with itself. This is, e.g., the case for queues with infinite server
semantics. To capture this important property, we need to distinguish not only
executable action modes, but different concurrent executions of them as well.
We denote one individual running action variant with the term activity in the
following. Such an activity models an enabled action variant, and contains the
remaining delay until execution or the planned execution time as well. If it
becomes disabled due to a state change, the activity ceases to exist.

The time between two subsequent action executions (or more exact ac-
tivity or action variant executions) depends on the times that the ongoing
activities have been enabled. Whenever an activity becomes newly enabled,
a delay is sampled from the delay distribution of the action. When the time
is used up, the activity is executed, provided there is no other activity sched-
uled for the same point in time, which disables the other one by its prior
execution. When we take a snapshot of the system dynamics, the remaining
activity delay stores the time that still has to elapse for an activity before
it may be executed. It is obvious that every activity is an action variant as
well; in the formal definition, however, activities have an associated remaining
activity delay which action variants naturally do not have. The time that is
spent in one individual state is called the sojourn time and might be zero.

2.2 Static Model Definition

A SDES is a tuple
SDES = (SV �, A�, S�,RV �)

describing the finite sets of state variables SV � and actions A� together with
the sort function S�. The reward variables RV � correspond to the quanti-
tative evaluation of the model and are covered in Sect. 2.4. The �-sign will
be used consistently to distinguish identifiers of the general SDES definition
from the later individual model class definitions. The elements of the tuple
are explained in the following.

S� is a function that associates an individual sort to each of the state
variables SV � and action variables Vars� in a model (see later). The sort of a
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variable specifies the values that might be assigned to it. In the following we
assume that a type system is implicitly used that allows standard operations
and functions on sorts. We do not elaborate on a more formal foundation of
types here. Because of the nature of the SDES model classes with well-known
basic types it is usually obvious how constants, variables, terms, and formulas
are constructed and evaluated. We denote by S� the set of all possible sorts.

S� :
(
SV � ∪Vars�

)
→ S�

SV � is the finite set of n state variables, SV � = sv1, . . . , svn, which is
used to capture states of the SDES. A state variable sv i usually corresponds
to a passive element of the SDES, like a place of a Petri net or a queue of a
queuing model.

For the later definition of state-dependent properties we denote with Σ
the set of all theoretically possible states of a certain SDES, which contains
all associations of values to each state variable allowed by the sort. However,
not all of these states need to be actually reachable.1

Σ =
∏

sv∈SV �

S�(sv )

State variables sv ∈ SV � have the following attributes.

sv = (Cond�,Val0 �)

There are cases in which not all values that belong to a sort of a state
variable are actually allowed. Think, e.g., of a buffer with a limited capacity.
It would be possible (but not straightforward) to specify this as a condition
of an action. The state condition Cond� is a boolean function that returns
for a state variable in a specific model state whether it is allowed or not.

Cond� : SV � × Σ → B

Val0 � is a function that specifies the initial value of each state variable,
which is necessary as a starting point for an evaluation of the model behavior.
The associated value obviously needs to belong to the sort of the corresponding
state variable.

∀sv ∈ SV � : Val0 �(sv) ∈ S�(sv)

and it is required to fulfill the state condition

∀sv ∈ SV � : Cond�
(
sv ,Val0 �(sv)

)
= True

A� denotes the set of actions of an SDES model. They describe possi-
ble state changes of the modeled system. An action a ∈ A� of an SDES is
composed of the following attribute functions.

1 The product symbol in the equation denotes the cross-product over all sets.
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a = (Pri�,Deg�,Vars�,Ena�,Delay�,Weight�,Exec�)

Pri� associates to every action a global priority. The priority is used to
decide which action is executed first if there are several activities that are
scheduled to finish at the same point in time. Actions with numerically higher
priorities complete first.

Pri� : A� → N

The enabling degree Deg� of an action specifies the number of activities of
it that are permitted to run concurrently in any state. This is for instance used
to capture the difference between infinite server and single server semantics,
for instance, of Petri net transitions or in queuing systems. Positive natural
numbers including infinity are allowed as values.

Deg� : A� → {N
+ ∪∞}

Actions a ∈ A� may be composed of several internal actions with differ-
ent attributes in some SDES model classes. In other examples, actions may
contain individual variants or modes. To capture this, the action variables
Vars� define a model-dependent set of variables Vars�(a) of an action a with
individual sorts. One setting of values for these variables corresponds to an
action mode mode. This is, e.g., equivalent to a binding in a colored Petri net.

For model classes with exactly one action mode per action, the set Vars� is
empty. The actual sorts need to be defined in the model class and are specified
formally by S� : Vars�(a) → S�.

Any one of the possible associations mode of values to the action variables
Vars�(a) of an action a is called an action variant and formally defined as a
mapping

∀var� ∈ Vars�(a),mode(a) : var� → S�(var�)

The set of all action modes of an action a is denoted by Modes�(a) and
defined as

∀a ∈ A� : Modes�(a) : {mode(a)}

Many attributes depend on an action a together with one of its corresponding
modes mode ∈ Modes�(a). To simplify notation, any possible pair of action
and action mode is called an action variant and written as v . The set of all
possible action variants AV is defined as

AV = {(a,mode) | a ∈ A�,mode ∈ Modes�(a)}

The following attributes of actions are defined on individual action variants
rather than the action itself. In many model classes, there are no action
variables and actions, thus contain only one action mode and variant. In
those cases it is not necessary to distinguish between an action and its
modes. We will then just write Attribute(a) instead of the complete Attribute(
a,mode(a)

)
.



22 2 A Unified Description for Stochastic Discrete Event Systems

Action variants may only start and proceed over their delay under certain
conditions until execution. If these conditions hold in a state, we say the action
variant is enabled in it. The value of the boolean enabling function Ena� of
an action variant returns for a model state if it is enabled or not.

Ena� : AV × Σ → B

An action is informally called enabled in a state if at least one of its variants
is enabled in it. It should be noted that the enabling degree of an action is
allowed to be positive in a state even if it is not enabled in it. On the other
hand, an action variant v that is formally enabled (Ena�(v , ·) = True) may
not be effectively enabled because the enabling degree of the action in the
state is zero. Definitions and algorithms for the dynamic behavior observe
these special cases.

The delay Delay� describes the time that must elapse while an action
variant is enabled in an activity until it finishes. This time is in most cases
not a fixed number, but a random variable with positive real values. Delay�

thus defines the probability distribution function for this random time.

Delay� : AV → F+

Some background on distribution functions and the set F+ is given in Sect. 1.4.
The weight Weight� of an action variant is a real number that defines

the probability to select it for execution in relation to other weights. This
applies only to cases in which activities with equal priorities are scheduled
for execution at the same instant of time. An example are firing weights of
immediate transitions in Petri nets. The calculation of the individual execution
probabilities is explained in more detail in the subsequent section, together
with the behavior of an SDES.

Weight� : AV → R
+

Exec� defines the state change that happens as a result of an action vari-
ant execution (i.e., the finishing and execution of the activity) and is called
execution function. As actions change the state, Exec� is a function that
associates a destination state to a source state for each action variant. This
function does not need to be defined or have a useful value for pairs containing
a variant that is not enabled in the respective state.

Exec� : AV × Σ → Σ

The given definition of an SDES will be used to map other well-known
modeling formalisms into one common framework in the subsequent chapters,
based on which, e.g., a set of analysis algorithms can be used transparently.
In the individual definitions of how the model classes can be mapped into (or
described as) an SDES, elements and attributes of the model class are used
to specify the corresponding SDES elements. One example is the mapping of
Petri net places to SDES state variables.



2.3 Dynamic Behavior of Stochastic Discrete Event Systems 23

2.3 Dynamic Behavior of Stochastic Discrete
Event Systems

This section formally defines the dynamic behavior of an SDES, the stochastic
process that an SDES model describes. Some definitions for the behavioral
specification are introduced first.

A state σ of an SDES captures a snapshot of all local states; it thus is
a mapping of values (of correct sorts) to all state variables. It is obviously
contained in the set of all possible states Σ.

σ ∈ Σ

The ith element of σ contains the value of the state variable sv i in a state
and is denoted by σ(sv i) with σ(sv i) ∈ S�(sv i).

For a description or an analysis of the dynamic behavior, things are greatly
simplified if the complete information that is necessary for the further behavior
is captured in only one current state. In addition to the state variable values
stored in σ we need to keep track of internal states of actions. A complete
state2 cs ∈ CS thus contains a (conventional) state of the state variables and
the internal states of all actions:

CS = {(σ, as) | σ ∈ Σ, as ∈ AS}

and AS as defined below. The set of all possible complete states is denoted
by CS .

The timing semantics of an SDES can be defined based on the assumption
of a remaining activity delay (RAD for short), which measures the time
that has still to elapse before an activity is executed. This term is similar to
the remaining firing time, e.g., used in the area of Petri nets. The action
state describes a set of enabled actions and action modes together with their
RAD . Following these considerations, an element of an action state is a 3-tuple
containing action a, action mode mode and the remaining activity delay RAD.
Such a tuple is the formal representation of an activity, which can obviously
be considered as an action variant together with a remaining delay as well.

as ⊆
{
(a,mode,RAD) | (a,mode) ∈ AV ,RAD ∈ R

0+
}

An element of an action state is called an activity. Activities are the entities
that are scheduled to happen at some instant of time due to the enabling of
action variants. Variants that are not scheduled for execution or are simply
not enabled cannot be contained in the corresponding action state. There
might be action variants that are enabled in a state of the state variables,
but are not contained in a corresponding action state because of concurrency
restrictions of an action (as defined by the enabling degree).

2 Also termed augmented state in the literature.
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The notion of action states will be used for the formal definition of the
dynamics of the stochastic process underlying an SDES later. The set of all
action states is denoted by AS = {as}. Please note that the same action
variant can be enabled multiply in a state, and thus might be contained several
times with the corresponding RADs in the set as . The associated remaining
activity delays RAD might be equal as well as a special case, thus requiring
as to be formally interpreted as a multiset (bag).

It should be noted that all sets as are finite, because the actual en-
abling degree in any state of the model is bounded. The set of pairs is
created and updated such that for enabled action modes the remaining
delays are stored, which are finite nonnegative real values. Using ∞ for-
mally as a delay, as it is sometimes done in the literature, is not neces-
sary because disabled action modes have no associated element in the set
of pairs.

2.3.1 Rules for a Behavioral Definition

After the introduction of states of an SDES model, the dynamic behavior can
be specified. This is informally done by the following rules; a more thorough
definition is given in the subsequent section.

The future behavior of an SDES model at a certain state and time de-
pends in general on the complete history. Such a way of describing (and
analyzing the model by any real implementation) would, however, not be
reasonable to do. It is more convenient both for the definition as well as an
algorithm if we are able to describe the future behavior by using only the
current state. This requires to keep information in such a necessary complete
state that contains information about ongoing activities and their attributes,
like the execution mode and delay. By doing so, it is possible to describe
the behavior with only a few rules below. The same principle is used to for-
mally define the behavior. It influences the resulting kind of stochastic process
(cf. Sect. 2.3.2).

Enabling Rule An action variant v is enabled in a state if its enabling
function Ena� evaluates to True in the state, and if for
every state variable of the SDES the prospective future
value after an execution of v fulfills the state condition
Cond�. We call an action enabled in a state if any one of
its variants is enabled in it.

Initial State Rule The initial complete state of the SDES model is given by
the initial state variable values Val0 � which are usually
given as part of the model. In addition to that, the ac-
tion states are initialized such that for every action with
enabled modes, as many of them are stored as specified
by the enabling degree. The selection of a certain mode
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out of all possible ones is done with equal probabilities.
The initial remaining activity delays are sampled from
the corresponding delay.

Sojourn Time Rule When the SDES is in a complete state, i.e., all ongoing ac-
tivities have been specified, the model time passes. Dur-
ing such a period all remaining activity delays (RAD)
decrease with equal speed, until (at least) one of them
reaches zero. Please note that the case in which there is
already an activity with RAD = 0 is a special case that
does not need to be treated separately. The first activity
for which the remaining delay reaches zero is executed;
this behavior is often called a race policy. The schedul-
ing rule defines in more detail how the activity that is
executed first is selected in the general case.

Scheduling Rule If there is more than one activity that is scheduled to
finish at the same time, because their remaining activ-
ity delays reach zero together, a decision needs to be
made which activity is executed first (although at the
same model time, if they do not disable each other).
First of all, the activity with the highest priority is se-
lected. If this still does not solve the conflict, meaning
that there are activities with equal priorities reaching a
zero RAD , a probabilistic choice is applied. The relative
probability of an activity to be selected is given by its
weight Weight�.

Execution Rule Execution of an activity (or an action variant) marks an
event and changes the values of the SDES state variables
according to the execution function Exec�. The executed
activity itself and all activities that are not enabled any
more due to the state change are removed from the set of
activities of the destination state. The action delays are
updated according to the elapsed sojourn time for the
remaining ones.
In a second step, the enabling degrees of all enabled ac-
tions are considered to update the set of activities of the
destination state. If the number of activities of an ac-
tion already contained in the set is bigger than the al-
lowed enabling degree, the exceeding ones are selected
with equal probability and removed. In the case that the
enabling degree is bigger than the number of existing ac-
tivities, action variants are selected with equal probabil-
ity to form new activities. The remaining delay of every
new activity is sampled from the delay distribution of the
action.
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2.3.2 The Stochastic Process Defined
by a Stochastic Discrete Event System

Section 2.3.1 gave informal rules about how an SDES evolves from state to
state by the execution of subsequent actions. For the evaluation of an SDES
we are mainly interested in its stochastic behavior over time, which is com-
monly abstracted by a stochastic process. Such a process can be viewed and
defined as a family of random variables {X(t), t ∈ T } as recalled in Sect. 1.4.
Throughout this section the stochastic process of an SDES is formally defined
and its evolution over time is specified in detail.

Different views on the behavior of an SDES are meaningful for the various
usages of the model: for the later evaluation of performance measures we are
mainly interested in the evolution of state variables over time and actions
that lead to state changes. For a complete definition of the dynamics of an
SDES, however, the stochastic process also needs to keep track of action vari-
ables, concurrently enabled action modes, and their remaining activity delays.
Hence, we define different stochastic processes in the following, starting with
the most detailed process that used to define the behavior of an SDES for-
mally. A simplified view on that process is defined based on it later on, which
can be used for the evaluation of quantitative measures of a model.

For the definition of the stochastic process given by (or underlying) an
SDES, the natural choice would be a continuous-parameter process, where
the parameter t is interpreted as the time. However, as we allow action delays
to be zero, there might be several action executions at the same point in time.
This may lead to ambiguities because the causal ordering among actions is
often important despite their execution at the same time.

We therefore define the stochastic complete process that underlies an
SDES as a discrete-parameter process with three parameters

CProc =
{(

cs(n), θ(n), ce(n)
)
, n ∈ N

}

where n is an index variable that numbers consecutive elements of the pro-
cess. The nth complete state of the model is denoted by cs(n). θ(n) specifies
the state sojourn time, i.e., the time that the model spends in state cs(n)
before event ce(n) happens, changing the model state to the subsequent state
cs(n +1). The model time at which the nth event ce(n) happens is given by
the sum of all state sojourn times passed before,

∑n
i=0 θ(i). Recall that for

a complete definition of the stochastic process CProc the remaining activity
delays of all enabled action variants need to be tracked. They are captured
in the second part of the complete state cs(n) for state n. To be specific, the
remaining times are stored that correspond to the point in time just after
event ce(n − 1) has happened. The initial values of the parameters are set
according to the initial state of the SDES model, which is described in detail
below.

CProc is called complete process of an SDES because all events (activity
executions) of the SDES are considered in their execution sequence, and the
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σ(1)

σ(2)

σ(3)

θ(0) + θ(1) time0

event ce(2)

event ce(0)

θ(0)

θ(2) = 0θ(1)θ(0) θ(3)

event ce(1)

state

σ(0, ·) = Val0 �(·)

Fig. 2.1. State, event, and sojourn time examples of the complete process

full information about complete states and remaining activity delays is cap-
tured. Figure 2.1 visualizes example relations between the elements. Events
ce(1) and ce(2) happen at the same time in the example; the sojourn time in
state cs(2), θ(2), is thus zero.

The elements of the complete process CProc are defined as follows for every
index n ∈ N. A state cs is a complete state of the SDES as defined in Sect. 2.3,
cs(n) =

(
as(n), σ(n)

)
∈ CS . It contains a value for each state variable in σ(n),

and a possibly empty set as(n) of activities (3-tuples containing action, action
mode, and remaining delay). This is necessary to store which and how many
action variants are concurrently enabled in a complete state.

The state sojourn time θ is defined as θ(n) ∈ R, and every event ce(n)
equals the executed action variant.

ce : n → AV

It should be noted that the execution of an action variant maps from a (simple)
source state to a (simple) destination state, while the states of the complete
process are complete states of the SDES.

It now remains to define in detail how the values of the elements of the
complete process change over time. This follows directly by applying the rules
that govern the behavior of an SDES given textually in Sect. 2.3.1 to the formal
definition of the complete process.

The evolution of the stochastic process is defined in an iterative manner:
we first specify how the initial complete state of the process cs(0) is set up.
A number of subsequent equations are given afterwards, which define θ(n),
ce(n), and finally cs(n + 1) based on the knowledge of cs(n). The stochastic
process for an SDES is thus completely defined, provided that it does not
exhibit improper behavior. This is discussed at the end of this section.
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The reader should keep in mind that the following is intended as a formal
definition of the process dynamics and not as an actual algorithm. Although
it could be used as one, an efficient software implementation should exploit
model properties.

The set of enabled action modes Enabled(a, σ) of an action a in a state σ
is defined as a prerequisite. It requires a variant of a to be enabled in state
σ, and the condition function to hold in the state that would be reached by
executing it.

∀a ∈ A�, σ ∈ Σ : Enabled(a, σ)
= {v = (a,mode) ∈ AV | Ena�(v , σ) = True (2.1)
∧ ∀sv ∈ SV � : Cond�

(
sv ,Exec�(v , σ)

)
= True}

The enabling degree Deg�(a) of an action specifies a maximal number
of concurrent activities that may be running in parallel. For actions with
different modes, we need to differentiate between the enabling degrees of the
individual modes as well. Remember that one mode (and thus one action
variant) corresponds to a setting of values to the action variables. There might
be several of them enabled in a state, and it is moreover possible that one
enabled variant can be activated in parallel to itself.

Think of a colored Petri net example as shown in Fig. 2.2 with numbers
as tokens in places P1 and P2. Transition T1 is enabled under the bindings
(i.e., has action variants for) x = 1, y = 3 and x = 2, y = 3. The enabling
degrees of the two action variants are 2 and 1, respectively, because there is
only one token 2 and two 1 in P1. In the general framework of SDES, the
enabling degree of an action variant VDeg� equals the number of times the
variant could be executed subsequently in a state, i.e., the number of times
it is concurrently enabled with itself. This value must be finite in any state,
even for actions with an unbounded number of servers. An infinite number of
concurrent activities would not make sense in a finite model.

The enabling degree of an action variant v returns a natural number for a
state.

T1

1
<x>

P2
int

P1
int

<y>

21

33

Fig. 2.2. Colored Petri net example for enabling degrees
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VDeg� : AV × Σ → N

It is not considered as an integral part of the SDES specification and thus not
specified in Sect. 2.2, because the actual value in a state could be derived by
checking how many times the variant can be executed until it is not enabled
any more.

The allowed degree of concurrency of any action variant is of course always
bounded by the overall enabling degree Deg�(a) of the action a. The minimum
of action degree and enabling degree of action variant must therefore be used
in all formulas. To avoid writing min

(
Deg�(a),VDeg�(v , σ)

)
in every place

where the degree of concurrency is used, we define the enabling degree of an
action variant accordingly, taking the action degree already into account.

∀v = (a,mode) ∈ AV , σ0 ∈ Σ :
VDeg�(v , σ0) = min

(
n,Deg�(a)

)
if ∃{σ0, σ1, . . . , σn} ⊆ Σ

with ∀i ∈ {0 . . . n − 1} : mode ∈ Enabled(a, σi)
∧ ∀i ∈ {0 . . . n} : σi+1 = Exec�(v , σi)
∧ mode /∈ Enabled(a, σn)

This is, however, a very inefficient approach for most model classes. Hence,
an individual VDeg� definition is given in each of the model class related
chapters.

We require in the following that the enabling degree of an action must
either be one or infinity if there is a state in which there is more than one
of its action modes enabled. The possible combinations of enabling degrees of
actions and action variants would otherwise become quite complex and hard
to specify and analyze. There has been no restriction whatsoever for the model
classes considered so far.

∀a ∈ A� :
(
∃σ ∈ Σ

∣
∣ |Enabled(a, σ)| > 1

)
→
(
Deg�(a) ∈ {1,∞}

)

The Initial State of the Complete Process

The initial complete state of the complete process cs(0) =
(
σ(0), as(0)

)

comprises the initial state of the state variables as well as the initial action
state. The initial state of the state variables σ(0) is directly given by the SDES
definition, as specified by the modeler.

∀sv i ∈ SV � : σ(0)(sv i) = Val0 �(sv i)

The initial action state as(0) is a multiset containing tuples such that for every
action a with enabled action variants there is a maximum of them given by the
degree of concurrency for the variant. The overall degree of concurrency of the
action Deg�(a) must not be exceeded as well. The initial remaining activity
delays are set according to the corresponding delay distribution. The following
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equation defines as ′′′a,mode , the set of activities for each action variant,3 of which
the union is taken resulting in the initial action state below.

∀v = (a,mode) ∈ AV :
as ′′′v (0) =

{
(a,mode,RAD)

∣
∣ mode ∈ Enabled

(
a, σ(0)

)
,RAD ∼ Delay�(v)

}

such that |as ′′′v (0)| = VDeg�
(
a,mode, σ(0)

)

Selection of the action modes is done with equal probabilities4 among the
enabled ones if necessary. This is done during the construction of the action
state as ′′′a (0) of every action a, over which the union is finally taken resulting
in as(0).

∀a ∈ A� :

as ′′′a (0) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∅ if
∣
∣Enabled

(
a, σ(0)

)∣
∣ = 0

⋃

v=(a,·)∈AV

as ′′′v (0) if Deg�(a) > 1

as ′′′v (0)
otherwise; select v = (a, ·) randomly:
P{v} = 1

|Enabled(a,σ(0))|

as(0) =
⋃

a∈A�

as ′′′a (0)

As this definition is very similar to the one below for the general definition
of as(n), any actual algorithmic implementation should instead use the cor-
responding steps after proper initialization of the temporary items defined
later.

Iterative Derivation of Complete States

Having defined cs(0) based on the SDES definition, we assume in the following
that cs(n) =

(
σ(n), as(n)

)
is known, and define how θ(n), ce(n), and cs(n+1)

are defined by construction.
With the knowledge of all remaining activity delays RAD of the ongoing

activities from as(n), the state sojourn time θ(n) of state n is simply the
minimum of all RAD values.5

θ(n) =

{
min(·,·,RAD)∈as(n)(RAD) if as(n) �= ∅
∞ otherwise

3 The prime notation has been chosen in correspondence to similar temporary items
for the general case n below.

4 A different approach would select action variants v that are multiply enabled
(i.e., with VDeg�(v , ·) > 1) with a higher priority. This would, however, make the
selection even more complex and is thus avoided here.

5 In the case of as(n) = ∅, the state cs(n) is a dead state and the process comes to
a stop. The end of the section discusses this case. We assume the sojourn time to
be infinity then.
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The value of θ(n) specifies the time that is spent in state cs(n). Based on it
we can now define which activity will cause the next event ce(n) by looking
for the activity with RAD = θ(n), the shortest time. Things become a bit
more complex if there are several activities for which this equation holds.
Priorities and weights are used to resolve the conflict, as it has been described
in Sect. 2.3.1.

We first define the set as0(n) ⊆ as(n) such that it contains all activities
with remaining activity times equal to the state sojourn time θ(n).

as0(n) =
{
(·, ·,RAD) ∈ as(n) | RAD = θ(n)

}

If as0(n) = ∅, there are no enabled activities in the state. The process is then
completely described and we do not need to follow the iterative definition
further. It depends on the type of analysis and applied algorithm if this can
be accepted or hints to a modeling error. We assume in the following that
there are enabled activities. To cover the case

∣
∣as0(n)

∣
∣ > 1 when more than

one activity is scheduled to complete at θ(n), we further restrict the set as0(n)
to activities with the highest priority π(n).

π(n) = max
(a,·,·)∈as0(n)

(
Pri�(a)

)

asπ(n) =
{
(a, ·, ·) ∈ as0(n) | Pri�(a) = π(n)

}

If the number of activities contained in asπ(n) is still bigger than one, weights
are used to perform a probabilistic choice between the remaining activities.
Any one of the activities

(
a,mode, θ(n)

)
∈ asπ(n) can be selected with the

associated weight as the relative probability.

ce(n) = (a,mode) with (a,mode, ·) ∈ asπ(n),

P{ce(n) = (a,mode)} =
Weight�(a,mode)

∑
(ai,modei,·)∈asπ(n) Weight�(ai,modei)

An algorithm does of course not need to execute all of the steps described
above to select the next event, if one of the sets as(n) or as0(n) already has
only one element.

After the selection of the activity ce(n) to be executed, we are ready to
define how the subsequent state cs(n+1) is constructed. There are two steps to
this task, which correspond to defining the two elements σ(n+1) and as(n+1).
The state σ(n+1) of the SDES state variables can easily be constructed from
the current state by applying the execution function of the activity ce(n),
because σ(n), σ(n + 1) ∈ Σ, and Exec�(v) : Σ → Σ.

σ(n + 1) = Exec�
(
ce(n), σ(n)

)

The derivation of the subsequent action state as(n+1) is more complex and
carried out in the following steps. The set of enabled action modes as defined
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in the beginning is used. When applied to the state of interest σ(n + 1), we
get the set of enabled action modes for every action a as Enabled

(
a, σ(n+1)

)
.

As a next step we define how the remaining activity delays are updated
for ongoing activities. We consider activities that have been active in state
σ(n) and are still enabled in σ(n + 1) first. The RAD is decreased by the
state sojourn time θ(n) for them, while the disabled activities in σ(n + 1)
as well as the executed event ce(n) do not have to be considered any more.
The elements are kept in different multisets as ′a,mode for every action variant
(a,mode) = v .

∀v = (a,mode) ∈ AV :

as ′v (n + 1) =
{(

a,mode,RAD − θ(n)
)

| (a,mode,RAD) ∈ as(n)

∧ mode ∈ Enabled
(
a, σ(n + 1)

)}
\ { (ce(n), 0) }

Now after having specified the continuing activities, it remains to update
the action state by considering the enabling degrees of all actions and action
variants. Recall that the enabling degrees specify the maximum number of
concurrent activities in a state σ. In the case that the updated action state
as ′a(n + 1) contains more activities, a probabilistic equal choice is necessary
to reduce the number of activities accordingly.

∀v = (a,mode) ∈ AV :

as ′′v (n + 1) ⊆ as ′v (n + 1) with

|as ′′v (n + 1)| = min
(
|as ′v (n + 1)| ,VDeg�(v , σ(n + 1))

)

P{(a,mode, ·) ∈ as ′′v (n + 1)} = min

(
VDeg�

(
v , σ(n + 1)

)

|as ′v (n + 1)| , 1

)

The opposite case is of course also possible: There are enabled action modes
of an action a (i.e., Enabled(a, ·) �= ∅), but the number of activities of that
action that are already contained in the action state is smaller than the al-
lowed enabling degrees of action and variants. The action state then needs
to be extended by adding more activities to fully exploit the possible degree
of concurrency. The following equation defines as ′′′v , the set of activities that
are added to as ′′v in order to form the updated action state. The selection of
one of the enabled action modes to be an element of as ′′′v is again done by
a probabilistic equal choice among the enabled modes. The initial remaining
activity delay for every new activity is sampled from the corresponding delay
distribution. In the special case that there is no enabled action mode of the
action, the set is obviously empty.
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∀v = (a,mode) ∈ AV :
as ′′′v (n + 1) = {(a,mode,RAD) | mode ∈ Modes�(a),RAD ∼ Delay�(v)}

with

|as ′′′v (n + 1)| =

{
0 if

∣
∣Enabled

(
a, σ(n + 1)

)∣
∣ = 0

VDeg�
(
v , σ(n + 1)

)
− |as ′′v (n + 1)| otherwise

and P{(a,mode, ·) ∈ as ′′′v (n + 1)} =
1

∣
∣Enabled

(
a, σ(n + 1)

)∣
∣

The combination of the different action states for the variants realizes a
probabilistic choice for the case Deg�(a) = 1. It should be noted that only one
of the sets as ′′′v (n+1) in the second line of the case differs from the empty set
if Deg�(a) �= ∞ because of the restriction introduced on p. 29. This restriction
is necessary for the equations above to work properly.

as ′′′a (n + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅ if
∣
∣Enabled

(
a, σ(n + 1)

)∣
∣ = 0

⋃

v=(a,·)∈AV

as ′′′v (n + 1) if Deg�(a) > 1

as ′′′v (n + 1)
otherwise; select v = (a, ·) randomly:

P{v} = 1
|Enabled(a,σ(n+1))|

All necessary building blocks are now available through the definitions
above. Together they make up the next complete state cs(n + 1), which is
defined accordingly.

cs(n + 1) =
(
σ(n + 1), as(n + 1) =

⋃

a∈A�

as ′′′a (n + 1) ∪
⋃

v∈AV

as ′′v (n + 1)
)

The section has shown how the step from a state n to the subsequent one
n + 1 is defined. The iterative application of the definitions thus completely
defines the stochastic process underlying an SDES.

Process Types and the Simplified Process

The complete process contains in each of its complete states all the informa-
tion that is needed to decide about the future of the process. The state sojourn
times are, however, not memoryless in general, leading to a semi-Markov pro-
cess. Part of the information that is kept in the complete state describes the
remaining activity delays. As they specify continuous time values, the com-
plete process can be characterized as a continuous-state semi-Markov process
or generalized semi-Markov process (GSMP). The variable over which the
process evolves counts discrete event executions, which makes the process a
time-homogeneous discrete-time GSMP [143].
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If we are interested in a view onto the basic system state as it changes over
time, we can define a corresponding simplified process SProc as a continuous-
time stochastic process

SProc =
{(

σ(t),SE (t)
)
, t ∈ R

0+
}

with σ(·) ∈ Σ

where the state of the state variables at time t is given by σ(t), and the
(possibly empty) set of events that are executed at time t by SE (t). This
process is completely determined by CProc following

σ(t) = σ iff cs

(

min
x∈N

t ≤
x∑

i=0

θ(i)

)

= (σ, ·)

and

SE (t) =

{

ce(n)
∣
∣
∣
∣ t =

n∑

i=0

θ(i)

}

The simplified process does not visit states of the complete process with zero
sojourn time, it is right-continuous in the states where some time is spent.
As there might be several executions of activities at one point in time, the
events of an instant t are stored as a multiset. It is not possible in general
to derive the correct ordering of events from this description. The simplified
process does, however, still contain all information necessary to derive quan-
titative measures from it, as explained in detail in Sect. 2.4. As the sets of
ongoing activities and their remaining delays are neglected in this definition,
it is not possible to foresee the next state and event. The future of the state
process could therefore be defined only based on the knowledge of its complete
history. The process is thus not semi-Markov, but can be characterized as a
continuous-time stochastic process due to its definition over a continuous time
variable t.

There are special cases of models in which the underlying stochastic pro-
cess belongs to a more restricted class. If in a model all delays are either
exponentially distributed or zero, the sojourn times in the process states be-
come memoryless, resulting in a Markov process. It is then not necessary to
store the remaining activity delays because of the memoryless property of
the exponential distribution, which means that the underlying process can be
described as a Markov chain.

If we allow one action variant with a nonexponentially distributed (or
immediate) delay executable in every reachable state, the process is not mem-
oryless any more. It is, however, sufficient for the description of the process to
capture the remaining activity delay of the nonexponential action variant in
a so-called supplementary variable [130]. Such a continuous variable is added
to the otherwise discrete state space. The whole information necessary for the
further evolution of the stochastic process is then captured in the augmented
state, making it a Markov process. For the derivation of the associated state
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equations it is not important whether the supplementary variable stores the
remaining delay or the elapsed enabling time.

An alternative view is to observe the stochastic process only at instants
of time when it is in fact memoryless. This will always happen eventually in
a model with the restriction described earlier, because an enabled nonexpo-
nential action variant is executed at some time. In states without such an
enabled action variant the process is memoryless anyway. Such a process is
referred to as a Markov regenerative process or semi regenerative process [71].
It is of special interest due to the existence of numerical analysis techniques,
see Sect. 7.3.3.

Restrictions and Special Cases

After the general definition of the stochastic process underlying an SDES, some
notes on useful restrictions and possible problems follow. They stem from the
consideration that most evaluation algorithms, both numerical/analytical or
by simulation, follow in principle the iterative construction of the stochastic
process as defined earlier. The absence of improper dynamic behavior is also
a prerequisite for the applicability of limit theorems for the calculation of
quantitative measures [150].

To avoid algorithms running forever without significant progress in model
time, the stochastic process underlying an SDES is not allowed to exhibit
an infinite number of events inside a finite interval of time. This would also
lead to a finite lifetime of the stochastic process, which is often not desired,
especially for the definition of the continuous-time processes above. There
are several ways in which such a problem may occur. One obvious case is
called absorption into the set of vanishing states, and happens when there is
a set of vanishing states which is entered once and can not be left any more.
A less problematic case occurs when there is a loop of vanishing states in the
reachability graph, which eventually is left to a tangible state. Algorithms
that use an on-the-fly elimination of vanishing states need to treat this case
separately.

Another case with an infinite number of events in a finite interval of time
is not so obvious. Even if the model time increases during the evolution of
the model, the sojourn times in subsequent states might become smaller and
smaller such that the model time has an accumulation point [150]. This case
is called explosion in the literature. Absence of an explosion is also called
nonZeno, e.g., in the field of timed automata after the philosopher’s imaginary
race between Achill and a turtle.

Finiteness of the lifetime might not be a technical problem in the case of
a transient analysis, as long as the considered transient interval is contained
in the lifetime. However, in the definitions above, we implicitly assumed an
infinite lifetime to simplify definitions. It should be noted that a much bigger
problem than explosion or absorption into the set of vanishing states is in
practice in the existence of dead states, i.e., in which no action is enabled



36 2 A Unified Description for Stochastic Discrete Event Systems

and the complete process would come to a stop and be undefined from that
point on.6 We assume in the following that models do not exhibit the kinds
of problems mentioned earlier. Algorithms that depend on these restrictions
are often able to test for them and exit with appropriate warnings whenever
necessary.

2.4 Measuring the Performance of SDES

Although SDES models can be useful on their own (like for documentation
purposes), the main application of stochastic models aimed at in this text
is quantitative evaluation. The SDES model itself as defined in the earlier
sections describes through its semantics how a system under investigation
evolves over time. To define what we want to know about the model and
thus the system itself, some kind of measure needs to be specified as well.
Examples could be the number of customers in a waiting room, the throughput
of a communication system, or other issues of performance and dependability.
The measures depend on the dynamic evolution of the SDES and are thus
formally defined based on the stochastic process.

The formal notion of such a measure is called reward variable in the fol-
lowing in accordance with the relevant literature. It is named reward because
there might be any kind of positive bonus or negative penalty associated with
elements of the stochastic process. Such a reward variable is merely a func-
tion of a stochastic process that returns a real value. This is why the general
type of evaluation we are interested in here is coined quantitative evaluation.
It should be noted that the reward values are unitless just like the numeri-
cal model attributes. Their interpretation is completely in the hands of the
modeler and needs to be consistent throughout model and rewards to avoid
misinterpretations.

Two types of elements of such a reward variable have been identified in the
literature. This was based on the basic observation that the stochastic pro-
cess of a discrete event system remains in a state for some time interval and
then changes to another state due to an activity execution, which takes place
instantaneously. For the efficient computation and user-friendly specification
of reward variables, their building blocks should be associated to process ele-
ments like states and state transitions. The natural way of defining a reward
variable thus includes rate rewards, which are accumulated over time in a
state, and impulse rewards, which are gained instantaneously at the moment
of an event, i.e., an activity execution.

The definition of a reward variable with rate and impulse rewards is, how-
ever, not sufficient to completely describe what the modeler is interested in.
If the number of vehicles driving over a crossing should be evaluated in an

6 The formal definition of the complete process and the simplified process are valid
even in the presence of dead states; the final state then lasts forever.
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SDES model of a traffic system, the observation time must obviously be spec-
ified as well. An interval with fixed length or the average behavior over an
infinitely long period are examples. They are closely related to transient and
steady-state evaluation. In addition to that, one might be interested in a mean
value over an interval, leading to a division by the interval length. There are
a number of possible combinations, which are covered extensively in Sanders
and Meyer [284]. Not all of them are meaningful for a quantitative evaluation;
the most important ones are defined for the SDES setting in detail later.

We have seen so far that a reward variable is a function of a stochastic
process and is computed for some specific time setting. Definitions of reward
variables are usually based on one sample path of the system, which would only
reflect a randomly selected one. However, as the process is stochastic, there
are many different possible outcomes of the dynamic model evolution. The
full information about a reward variable would thus require to analyze every
possible process instance, and to compute a probability distribution function
of the reward variable value from them. Many analysis algorithms are not
capable of delivering this information, which is fortunately not necessary in
most cases. The term reward variable measure is thus used as a derived value
like the expectation or a quantile of an actual reward variable.

The detailed information about quantitative measures of SDES given be-
low is structured as follows. The next section describes how reward variables
are formally specified in the SDES framework. The semantics of the reward
variables in terms of the stochastic process is shown in the subsequent section.

However, this is only an abstract description just as the unified SDES
definition itself. For every actual model class like Automata or Petri nets, a
definition of specific reward variables is given in the respective sections. Their
formal relationship to SDES reward variables is defined there as well, which
allows to interprete the measures on the SDES level just as the model parts
itself. Typical model-class specific reward variables are listed, and application
examples can be found in Part III.

2.4.1 Reward Variable Specification

The finite set of reward variables RV � of an SDES is a part of its defini-
tion (compare p. 19). This underlines the view that the definition of perfor-
mance measures is an integral part of a model description. Every element
rvar� ∈ RV � specifies one reward variable and maps the stochastic process to
a real value. How this is done, i.e., the actual semantics of the reward variable
definition, is described in the subsequent Sect. 2.4.2.

∀ rvar� ∈ RV � : rvar� : CProc → R

More complex quantitative measures can be constructed on a higher level in
a model using the reward variable results and combining them in arithmetic
expressions. This is for instance necessary if a measure of interest is calculated
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as a nonlinear function of rate and impulse rewards. This is not specified inside
the reward variable parameters. We do not go into the details how this can
be done, because it appears as a technical question.

Each variable rvar� is further defined by a tuple that contains specific
information about how the value of the variable is derived from the stochastic
process. The elements are defined and explained below.

∀rvar� ∈ RV � : rvar� = (rrate�, rimp�, rint�, ravg�)

The reward that is gained in a state of the model over time is defined by
the rate reward rrate�. It returns a real number for every SDES state of the
model, which is the rate of reward collected per model time unit.

rrate� : Σ → R

Activity executions may lead to gaining a reward instantaneously. This
is specified by the impulse rewards, which are denoted by rimp�. Each one
returns a real number for a state change, depending on the action variant that
completes. Only action variant information is used for the activity, because
the remaining firing time of an executed activity is always zero.

rimp� : AV → R

Similar definitions in the literature also allow impulse rewards to depend on
the state before the completion of action. This was intentionally left here
to simplify definitions and because it is not necessary for the application
examples considered. It would, however, be simple to add this possibility to
the SDES framework. Rate and impulse rewards are together often called a
reward structure in the literature.

The model time interval during which we want to observe the stochastic
process is given by the observation interval, rint�. It is a closed interval
of positive real values, including infinity. The latter is used to denote cases
in which the limiting behavior of the stochastic process should be analyzed
(explanations are given below).

rint� : [lo, hi ] with lo, hi ∈
(
R

0+ ∪ {∞}
)
∧ lo ≤ hi

The interval definition is already sufficient to differ between instant-of-time
and interval-of-time measures. If lo = hi , the instant of time is given by both
values, while an interval is obviously specified if lo < hi .

The last element ravg� of a reward variable definition stores the informa-
tion whether the resulting measure should be computed as an average over
time or accumulated. If the boolean value is True, the variable is intended as
an average measure.

ravg� ∈ B

The reward variable measure itself is not kept as a part of the model defi-
nition. It is in general very complex (and often not needed, as for the example
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applications given in Part I) to solve for the reward variables in distribu-
tion. Hence only expected values of reward variables (expected accumulated
reward, expected average reward, expected instantaneous reward) are consid-
ered in this text.

Only a few of the many possible types of reward variables are commonly
used in the literature and in this work. A selection of typical variables can be
expressed in the SDES framework as follows.

Instant-of-time measures analyze the value of a reward variable at a certain
point in time t. This is often referred to as transient analysis.
The instantaneous reward at time t is computed if we set the
reward variable parameters as follows:

rint� = [t, t] ; ravg� = False

Often the algorithmic implementation requires to compute
the values of the reward variable for all arguments inside
the interval [0, t) as a prerequisite to compute it for t. The
evolution of the reward variable value over this interval can be
a valuable information in addition to the numerical value that
needs to be computed. Software tools can graphically show
the value of the reward variable over time. The underlying
analysis is, however, of the instantaneous type, despite the
information about an interval.

Interval-of-time analysis of a reward variable asks for the accumulated re-
ward over a certain time period. The left boundary of the
interval is usually zero, because one could otherwise set the
initial state of the model to an appropriate value for the dif-
ferent starting time in many cases. The accumulated reward
is normally different from zero and does not sum up to a
finite value over an infinite time period. Therefore, the nor-
mal case for an interval-of-time analysis has a finite right
interval boundary. This case (accumulated reward until t) is
captured by a parameter setting

rint� = [0, t] ; ravg� = False

Many software tools allow only a starting time of zero for
an interval-of-time analysis. If a different time is needed, one
can in this case obviously execute two analyses and subtract
the results as

rvar�
[lo,hi] = rvar�

[0,hi ] − rvar�
[0,lo]

A slightly different type of analysis can be done if the average
reward over the transient time interval needs to be computed.
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This case is called time-averaged interval-of-time or just
average reward until t, and is simply specified as

rint� = [0, t] ; ravg� = True

Steady-state analysis derives the mean value of the reward variable after
all initial transient behavior is left behind. The usual way to
specify (and to compute) this value is to set the following
reward variable parameters

rint� = [0,∞] ; ravg� = True

That is, the reward is accumulated from time zero to infinity
and is averaged over (divided by) the interval length. It
should be noted that the expected time-averaged limiting
value is the same as the expected limiting value for the
instantaneous reward, if both limits exist. The latter would
be described by

rint� = [∞,∞] ; ravg� = False

2.4.2 Derivation of Reward Variables

After the specification of reward variables as described in the previous section,
we now formally describe how the reward variable values are defined. This
is done based on the simplified process SProc. The definition of SProc was
uniquely defined by the complete process CProc, and we may thus use it
instead of the latter. Recall that SProc is characterized at time t by the state
σ(t), and the set of activities SE (t) that are executed.

For the definition we first introduce an intermediate function Rinst
�(t).

This value can be interpreted as the instantaneous reward gained at a point
in time t. It is a generalized function in that it contains a Dirac impulse Δ if
there is at least one impulse reward collected in t.

Rinst
�(t) = rrate�

(
σ(t)
)

︸ ︷︷ ︸
rate rewards

+ Δ
∑

se∈SE(t)

rimp�(se)

︸ ︷︷ ︸
impulse rewards

Depending on the type of reward variables rvar� ∈ RV � of an SDES, their
values can now be derived from the simplified stochastic process by using the
individual functions Rinst

�. Assume for notational convenience

lo = min(rint�), hi = max(rint�),
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we define the reward variable value

rvar�(CProc) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
x→lo−

Rinst
�(x) if lo = hi < ∞∧¬ravg�

lim
x→lo−
y→hi+

∫ y

x

Rinst
�(t) dt if lo < hi < ∞∧¬ravg�

lim
x→lo−
y→hi+

1
y − x

∫ y

x

Rinst
�(t) dt if lo < hi < ∞∧ ravg�

lim
x→lo−
y→∞

1
y − x

∫ y

x

Rinst
�(t) dt if lo < hi = ∞∧ ravg�

(2.2)

The first case covers instant-of-time variables and the second accumulated
interval-of-time variables. The third and the last one capture variables of the
types averaged interval-of-time as well as steady-state. Averaged interval-of-
time measures are obviously undefined for zero length intervals. Please note
that the limits are taken from above (x → lo+) or from below (x → lo−)
accordingly.

An example for the use of infinite values is the steady-state probability of
being in a state σi, which can be computed as the averaged interval-of-time
measure (ravg� = True) over time rint� = [0,∞]. We use zero impulse rewards
and a rate reward that equals one in state σi only:

rimp�(·) = 0; rrate�(σ) =

{
1 if σ = σi

0 otherwise

Following the definitions above and after simplifying we reach

P{SProc in state σi} = lim
hi→∞

1
hi

∫ hi

0

rrate�
(
σ(t)
)
dt

= lim
n→∞

∑n
i=0; cs(i)=(σi,·) θ(n)
∑n

i=0 θ(n)

where the final equation is based on the complete process CProc. Besides
that, it shows the basis of how simulation algorithms work for that kind of
performance measure. An estimator for the probability to be calculated is the
sum of simulation times in which the condition holds divided by the overall
simulation time.

This leads to the general question if the limits that have been defined
above for infinity exist and which values they take. In fact, if both the limit
for instant-of-time and time-averaged interval-of-time exist, they are the same.
They differ for instance in a purely deterministic, periodic system, for which
an example is given in German [127]). A rigorous treatment of limit theorems
for stochastic discrete event systems can be found in Hass [150].
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Notes

An integration of different discrete event model classes in one framework is
advantageous because it allows the modular extension by new model classes
and analysis algorithms. Several software tools and modeling frameworks
have been proposed in this context. Following Deavours [82], the different
approaches are characterized as follows. Single formalism, multiple solutions
methods develop different evaluation methods for a single class of models.
An appropriate analysis algorithm, e.g., simulation or numerical analysis, can
be selected depending on the actual model properties. Integration of several
model classes is tackled in multiple formalism, multiple solutions approaches.
Tools that offer a common user interface to a variety of models and evaluation
techniques belong to this class. Please refer to Chap. 12 for a list of related
software tools.

A system-theoretical approach to the abstract notation of discrete event
systems is followed in the Discrete Event System Specification (DEVS [332]).
Internal states and the interface to the model environment are thus focused in
the description. Coupling and hierarchical composition of models is possible
in this framework, which can be used for simulation.

Background on stochastic processes can, e.g., be found in Refs. [71, 143,
170,305], and a brief overview was given in Sect. 1.4.

Performance evaluation of SDES models is done with the specification
and computation of rewards. An early reference is [170], in which a reward
structure is defined on semi-Markov processes with yield rates and bonuses,
which correspond to rate and impulse rewards. Yield rates and bonuses are,
however, more complex in that they may depend on the previous state as well
as the sojourn time. Possible types of reward variables are characterized in
Sanders and Meyer [284]. Reward structures with rate and impulse rewards
are defined in a unified way for stochastic activity networks (SANs).

The definition of rewards presented for SDES models is close to the one
given in German [130]. Rate and impulse rewards as well as the relations
between instantaneous and steady-state measures are considered. Information
about the existence of the limits for the result derivation can be found in
[130, 150]. Summation of indicator variables over all states is followed for
impulse and rate rewards in German [130], which restricts the definition to
finite state sets. This is not necessary because the stochastic process is in
exactly one state at any time, which is exploited in the definition given here.
Another difference is that impulse rewards are not included in instant-of-time
measures in this text. The result might otherwise contain a real value and a
Dirac impulse.

In an earlier work about stochastic Petri net performance evaluation in
the setting of stochastic reward nets [59], rate and impulse rewards are de-
fined on the stochastic process in a mixed way: rate rewards are integrated
over time, while impulse rewards are derived by summation. This avoids the
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use of the Dirac impulse in the definition, but can therefore not be defined
straightforward on the stochastic process like it is done here.

Summation for both impulse and rate rewards over indication variables is
followed for the definition of reward measures in German [284]. This approach
is extended to abstract discrete event system models in Deavours [82] using a
reward automaton defined on top of the stochastic process of a model.
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Stochastic Timed Automata

One of the simplest model classes of stochastic discrete event systems are
stochastic timed automata, which are explained in this chapter. The states
and state transitions of a discrete event system are explicitly modeled in
an automaton. Their level of abstraction is thus identical to the actual set
of reachable states and state transitions, which makes them easy to under-
stand and use for simple systems. More complex behavior is however better
expressed with one of the model classes that are covered later in this text. The
only abstraction of an automaton is in the notion of events, which correspond
to actions that may happen in several states. One event can thus lead to many
state transitions in the full model.

An automaton is said to be deterministic or nondeterministic depend-
ing on whether there are events for which more than one associated state
transition starts at one state. Standard automata describe states and state
transitions without a notion of time. Delays of actions (interevent times) are
associated to events and their associated state transitions in timed automata,
for which the performance can then be evaluated. In a stochastic timed au-
tomaton, the interevent times are allowed to be random, and given by a
probability distribution function.

Automata are a way of representing languages, if we think of the set of
events as an alphabet and sequences of events as strings. A string that can be
produced by an automaton corresponds to a trace of events. However, the re-
lationship between languages and automata is not deepened here, because we
are mainly interested in stochastic automata as a way of describing the behav-
ior of a discrete event system by looking at states and events. The interested
reader is deferred to the rich body of literature on this topic (e.g. [168]).

Stochastic timed automata as used in this text are introduced informally in
the subsequent section. The model class is formally defined and the translation
into an SDES model is covered in Sects. 3.2 and 3.3. Section 3.4 explains the ba-
sic elements of Statecharts in the form that is present in the Unified Modeling
Language (UML). They can be seen as an extension of automata model classes
and are included here due to their industrial acceptance. The transformation
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of Statecharts into stochastic Petri nets is the topic of Sect. 3.5. Details are
shown for Statechart states and transitions as well as the interpretation of
annotations. An algorithm for the transformation into stochastic Petri nets is
explained in Sect. 3.5.3. Finally, some notes are given.

Evaluation methods for SDES models, into which automata are translated,
are given in Part II. A small application example of UML Statecharts as an
automata variant is presented in Sect. 14.3.2, which is subsequently translated
into a stochastic Petri nets with the method explained in Sect. 3.5.

3.1 Informal Introduction

An automaton is an explicit description of system states and events, together
with state transitions due to the events. It is a simple model (compared to
the other modeling methods considered throughout this work) and very close
to the general understanding of discrete event systems on a state/event level.
They can be formally defined using sets and relations as it is done in the
subsequent Sect. 3.2. A notation by a labeled directed graph, called the state
transition diagram, is more useful to understand the concept.

Consider for example the automaton shown in Fig. 3.1. The states of the
system that is modeled with the automaton are the nodes of the graph. Arcs
correspond to state transitions, indexState transition that are labeled by
names of events . The behavior that is described by the automaton is the
following. The automaton is always in one of the states shown in the graph.
The initial state of the automaton (x in the example) is denoted by an arc
without source state. The events that are inscribed at any one of the outgoing
arcs of that current state are called active events.

It should be noted that because not all events are active in every state,
there are events that are not allowed to occur in some states, and there is

x

state
initial

a

c

y b

a, c

states

b

state transition

event

a

z

Fig. 3.1. Example of an automaton
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no corresponding state transition for them (see e.g. event c in state y). This
means that the state transition function, which maps states and events to
destination states, does not need to be completely defined for its domain.
In some cases an event does not change the state, which is denoted by a self-
loop (event b in the example). In other cases, two or more events may lead
from one source state to the same destination state (like events a and c in
state z in the example).

If there are several events active in one state, the model needs to specify
which one occurs. For any number of outgoing events, the holding time for
each state needs to be defined as well. This is done as follows. Whenever an
event becomes active in a state and was not active in the previously visited
one, a clock value is set for it. This value is randomly selected from the
interevent time (a probability distribution function) that is defined for each
event. The clock values of all active events are decreased with model time
until one of them reaches zero. The corresponding event, the fastest one, is
the one that occurs and leads to a state transition. If there is more than one
event for which the clock value reaches zero, a probabilistic choice with equal
probabilities is made to select the event that occurs first. If an event was active
in a state and is still so in a consecutive one, its clock value is not changed by
the state change of the automaton.

It should be noted that our understanding of Automata is in the follow-
ing based on stochastic timed extension of deterministic automata, i.e., with
only one possible state change for an event that happens in a state. This
choice is merely done for simplicity of explanation. A nondeterministic au-
tomaton for example can have different destination states for one enabled
event in a state, which requires a probability distribution to be defined over
them. It is possible to capture stochastic timed nondeterministic automata
as an SDES by adding intermediate states and subsequent state transitions
for the nondeterministic choices that can take place after the execution of an
event.

If the set of states of an automaton is finite, it is called a finite-state
automaton. If the automaton is taken as a model of a discrete event sys-
tem, and to be stored and analyzed by a computer program as the intention
is throughout this work, we require the sets of states to be finite. The ba-
sis for our definitions are thus stochastic timed finite-state deterministic
automata.

The modeler finally needs to express quantitative measures that he is in-
terested in. Typical examples include the probability of being in one of the
automaton states or the number of times that one event occurs. All these
measures may then be evaluated for a specific point in time after the ini-
tial state, in steady state or in other settings as it has been explained in
Sect. 2.4.

We adopt a syntax for the specification of performance variables here that
is similar to the ones used for Petri nets in later chapters. The modeler may
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create a performance measure as a usual arithmetic expression containing the
following model-relevant elementary types:

1. P{<state>, <state>, . . . } corresponds to the probability of being in
one out of a list of specific states of the automaton, which are identified
by their names. Example for Fig. 3.1: P{z, y}.

2. T{<event>, <event>, . . . } computes the number of occurrences for
all listed events.1 Example: T{c}

Usage of the simple performance measure types should be quite clear. State-
related issues like the probability of a resource being in a certain state is
simply expressed as a P-type measure with all corresponding automata states
in the list. Simple measures that are related to events like throughput can be
solved in a similar way.

3.2 Model Class Definition

A Stochastic Automaton is defined as a tuple

A = (X , E , f, Γ, x0, G,RV )

with the following elements.
The state space is a set denoted by X , containing the individual states

x ∈ X of the automaton. The actual elements of the state space set are not
important, we just interprete every one of them as one state of the specified
automaton, like an identifier.

E , the event set, is the finite set of events e ∈ E of the automaton. We
require it to be finite in order to apply algorithms that iterate over the set of
events later.

The events that are active (feasible, enabled) in a state are given by the
active event function, which is denoted by Γ . It returns the set of active
events for a state.

Γ : X → 2E

We say that an event e is active in a state x iff e ∈ Γ (x).
Active events may lead to a change of state. This is described by the state

transition function f , which returns the destination state for a source state
and an event. The function does not need to be defined or the result is ignored
for state/event pairs where the event is not active in the state.

f : X × E → X

x0 specifies the initial state of the automaton.

x0 ∈ X

1 The notation is chosen for a compact description of performance measures; obvi-
ously, P{z, y} = P{z} + P{y} and T{b, c} = T{b} + T{c}.
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For every event e that becomes active when a new state is entered, the cor-
responding clock value needs to be randomly initialized. This is done according
to a distribution function, which is specified by the interevent times2 G.

G : E → F+

The set of distribution functions {G(e) | e ∈ E} is sometimes referred to as a
stochastic clock structure or timing structure.

RV specifies the set of reward variables of the stochastic automaton. Two
elementary types have been proposed in the informal introduction above,
namely the probability of being in any one of the states {xi, ..., xj} ⊆ X
(syntax: P{xi, ..., xj}) and the number of state transitions due to a set of
individual events {ei, ..., ej} ⊆ E (syntax: T{ei, ..., ej}).

A flag rtype denotes the corresponding type of each reward variable. Ob-
viously the first type corresponds to a rate reward, while the latter leads to
an impulse reward in the SDES framework. The parameter rexpr either spec-
ifies the state set for the first case or the event set for which the number of
occurrences should be computed in the second case:

∀rvar ∈ RV : rvar = (rtype, rexpr)
with rtype ∈ B

and

{
rexpr ⊆ X if rtype = True (P-case)
rexpr ⊆ E if rtype = False (T-case)

3.3 Automata as SDES

The SDES definition comprises state variables, actions, sorts, and reward vari-
ables

SDES = (SV �, A�, S�,RV �)

which are set as follows to capture a stochastic automaton as defined in the
previous section.

There is exactly one state variable sv , whose value is the state of the
automaton. The set of state variables SV � has therefore only one element.

SV � = {sv}

The set of SDES actions A� is given by the events of the automaton.
A� = E

The sort function of the SDES maps the state variable to the allowed values,
i.e., the state space of the automaton. As there are no SDES action variables
necessary, no sort is defined for them.

S�(sv) = X

2 See Sect. 1.4 for the definition of F+.



50 3 Stochastic Timed Automata

The set of all possible states Σ is obviously

Σ = X

The condition function is always true, because all states in X are allowed.

Cond�(·, ·) = True

The initial value of the state variable is directly given by the initial state of
the automaton.

Val0 �(sv) = x0

Actions of the SDES correspond to events of the stochastic automa-
ton. There is no explicit priority given for them, we thus select w.l.o.g. the
value one.

∀a ∈ A� : Pri�(a) = 1

Events of an automaton are either active or not, there is no enabling degree
other than the standard value of one.

∀a ∈ A� : Deg�(a) = 1

Thus the individual enabling degree of any action variant can be set to one
in every state as well.

∀σ ∈ Σ : VDeg�(·, σ) = 1

An action of an SDES for a stochastic automaton is completely described
by the attributes of a single event. Action modes or variables are not necessary.

∀a ∈ A� : Vars�(a) = ∅
Thus there is exactly one action mode per event, |Modes�(a)| = 1, and we can
omit the action mode and variant in the following.

An event of an automaton is enabled in a state if it is contained in the
active event set for that state.

∀a ∈ A�, ∀σ ∈ Σ : Ena�(a, σ) =

{
True if a ∈ Γ (σ)
False otherwise

The delay of an SDES action is distributed as specified by the interevent
time for the corresponding event.

∀a ∈ A� : Delay�(a) = G(a)

No weights of events influencing their execution probabilities are defined
for a stochastic automaton. We thus assume an equal weight of 1 to resolve
cases in which two events are scheduled for execution at the same time.

∀a ∈ A� : Weight�(a) = 1
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If an enabled action is executed, i.e., an active event happens, the corre-
sponding state change is directly given by the state transition function of the
automaton.

∀a ∈ A�, ∀σ ∈ Σ : Exec�(a, σ) = f(σ, a)

The set of automata reward variables RV can be converted into the set
of SDES reward variables with the following simple rules. The two elements
rint� and ravg� of an SDES reward variable specify the interval of interest and
whether the result should be averaged. They correspond to the type of results
the modeler is interested in and are not directly related to the model. Hence
they are set according to the type of analysis (algorithm) and not considered
here.

One SDES reward variable is constructed for each automaton reward vari-
able such that

RV � = RV

and

∀rvar ∈ RV � :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rrate�(xi) =

{
1 if xi ∈ X ′

0 otherwise
rimp� = 0

⎫
⎪⎬

⎪⎭
if rvar = (True,X ′)

rrate� = 0,

rimp�(ei) =

{
1 if ei ∈ E ′

0 otherwise

⎫
⎪⎬

⎪⎭
if rvar = (False, E ′)

Thus a rate or impulse reward of one is earned either per time unit as long as
the model spends time in a state x ∈ X ′ in the first case, or whenever one of
the specified events ei ∈ E ′ occurs for the latter.

3.4 UML Statecharts

The UML is a collection of semiformal modeling languages for specifying, visu-
alizing, constructing, and documenting models of discrete event systems and
of software systems. It provides various diagram types allowing the descrip-
tion of different system viewpoints. Static and behavioral aspects, interactions
among system components, and implementation details are captured. UML
is very flexible and customizable because of its extension mechanism with
so-called profiles. A profile for a special application domain maps aspects
from the domain to elements of the UML meta model. The UML Profile for
Schedulability, Performance, and Time [255] is an example. The term Real-
Time UML (RT UML) is used in the following to denote the UML 2.0 [256]
in combination with the mentioned profile.
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UML defines 13 types of diagrams, which can be divided into structural and
behavioral ones. Structural diagrams (like class diagrams) are used to model
the logical and architectural structure of the system. Behavioral diagrams
(like sequence charts) describe system dynamics and thus include or may
be enhanced by timing information. The latter type is thus important when
dealing with quantitative modeling and analysis of systems.

Among the behavioral diagrams we consider UML Statecharts (UML-SC)
as an appropriate basis for modeling stochastic discrete event systems and
their behavior. Other behavioral diagram types such as sequence charts are
not as easily usable: they originally describe only one trace (sequence) of the
behavior, and are thus better suited for the specification of usage and test
cases. Collaboration diagrams as another example focus on the interactions
and not the states.

UML-SC follow the idea of states and state transitions like an automata
model. They can thus be used for specifying possible sequences of states that
an individual entity may proceed through its lifetime. This type is called
Behavioral Statechart [256], which is a variant of statecharts as defined by
Harel [153,154]. Statecharts in their various forms are widely accepted in the
industry. The software tool StateMate [153, 155] has set a de-facto standard
and is used, e.g., for the model-based verification of signaling systems [77].

Model elements include states, different pseudostates, and transitions. A
simple UML-SC example with basic elements is sketched in Fig. 3.2. A state
(A and B in the figure) models a situation during which some condition holds.
When a state is entered as a result of a transition, it becomes active. It becomes
inactive if it is exited as a result of a transition. Every state may optionally
have one of each so-called entry, exit, and do actions or activities, like for
example state A in Fig. 3.2. Whenever a state is entered, it executes its entry
action before any other action is executed. A do activity occurs while the
UML-SC is in the corresponding state, and might be interrupted if the state
is left. The exit action is executed before the state is left due to an outgoing
transition.

A transition causes the exit of a source state and leads to a target state.
In Fig. 3.2 a transition leads from state A to state B. Transitions may be
inscribed with optional event, guard expression, and an action list. An event

A

entry / x=3
do / check
exit / y++

ev1

ev2 [x>0] / x++

B

Fig. 3.2. Basic UML Statechart elements
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One

D

ev1
E F

Two

C

Fig. 3.3. Composite state example

triggers the transition, but it may only be taken if the guard evaluates to
true. The transition from A to B in the figure is triggered by event ev1. Events
may be of the types Signal (asynchronous communication), Call (synchronous
communication), relative or absolute Time (for deadline and others), or simply
a Change of a variable value. A guard is a boolean expression that may depend
on variables. The self-transition from state A to itself in Fig. 3.2 is taken when
event ev2 occurs, provided that the guard x>0 is true. If there is an action
list attached to a transition like x++ in the example, it is executed while the
transition takes place.

A state of a UML-SC may either be a simple automaton state (i.e., a simple
state like A in Fig. 3.2) or contain internal states and transitions. In that case
it is called composite state; Fig. 3.3 gives an example.3 The contents of the
states thus allow hierarchical modeling, hiding the inner behavior. A state of
a composite state is called its substate, E is for instance a substate of Two.

Only one state is active at any time in a classic automaton, which makes
the description of concurrent activities cumbersome. State Two is either in
substate E or F if it is active itself. UML-SC have the ability to model differ-
ent activities within one object with orthogonal states.4 The concurrent state
machines inside such a state are called regions and divided by a dashed line.
State One in Fig. 3.2 contains two regions, the lower one is again hierarchically
refined. The complete state of such an orthogonal state is a subset of the cross
product of the states contained in the regions. A state may also contain only
one region with its states and transitions,5 state One in Fig. 3.2 is an example.

In a hierarchical UML-SC model, all composite states that directly or in-
directly contain an active simple state are active as well. The complete state
of such a model is thus represented by a tree of states, and the tree structure
is given by the substate and composition relations. Complex nested UML-SC

3 The black dots depict initial states and are explained later.
4 Called AND-states in [93].
5 It is then called nonorthogonal [256] or OR-state [93].
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Junction

Initial

Fork

ShallowHistory

Terminal

Join

DeepHistory

Choice

H*H

Fig. 3.4. Graphical notation of pseudostates

models may be visually simplified by hiding detailed substates in submachines.
This is however only a drawing alternative, and has no actual semantics. Tran-
sitions that cross the border of such a state could not be differentiated from
the ones that start from the enclosing state. Entry and exit points (see below)
are used to visualize this difference.

A pseudostate is a node in the state machine graph, which is transient
because it is left immediately. They can be used to express decisions or paths
that accumulate state transitions. The following pseudostates are defined in
a UML-SC [93, 256] and depicted in Fig. 3.4:

Initial This pseudostate belongs to a composite state, and has one
state transition (the default transition) that leads to the de-
fault state of the composite. It is depicted by a small filled
circle.

Terminal state A transition to it represents the end of activity in the region.
A composite state is however only completed when all its
regions have reached their final states.

Fork These pseudostates are used to split transition paths into sev-
eral transitions that lead to individual regions. In other words,
all outgoing transitions are taken concurrently, and lead to in-
dividual initial states in the concurrent regions.

Join Have the opposite function, and merge transitions coming
from different regions.

ShallowHistory This one is shown as a letter H in a circle, and a transition
to it from the surrounding state means that the initial state
equals the most recent local substate that has been active
before the composite state was exited. It thus stores the last
state over periods in which the state itself is not active.

DeepHistory Similar to ShallowHistory, but restores the whole composite
state with all of its contained substates.

Junction Only serve to connect subsequent transitions inside one re-
gion to a path. They can however be used to merge and split
transition paths as well, with individual guards on outgo-
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ing transitions in the latter case. Their connected transitions
belong to the same region in difference to a Join or Fork.

Choice This type of vertex is used to implement dynamic conditional
branches. The guards of their outgoing transitions may de-
pend on results that have been completed during the same
path execution. Junction states differ from this behavior, be-
cause their path transitions are all considered in one execution
step.

EntryPoint Entry points of a state machine, which can be accessed from
outside.

ExitPoint Leaves the surrounding composite state whenever it is reached
in any region. Entry and exit points symbolize state-border
crossing transitions of a submachine, and therefore do not
add to the behavioral semantics and are omitted in Fig. 3.4.
Both serve as interfaces of a submachine, and are depicted
as circles on the border of the submachine; ExitPoints with a
cross.

Transition execution happens after the exit action of the previous state
has been finished, and before the entry action of the destination state starts.
In the case of nested states, exit actions are executed bottom-up (starting
from inside), and vice versa for entry actions. Complex transitions can be
modeled with a sequence of transitions and pseudostates. The simplest case
is a sequence with Junctions to connect them. Junctions may have several
incoming and outgoing transitions. In the latter case, all outgoing transitions
must be guarded such that at most one of them can be taken. The transi-
tion path is not executed as long as there is no guard fulfilled. All guards
of a transition path are evaluated before any of the corresponding actions is
performed. Choice points can be used if this is not the intended behavior:
the actions of transitions on the path before the choice point are executed
before the guard is evaluated. It is thus required that one of the guards of the
outgoing transitions of a choice point must be true, because otherwise a dead
end is reached. More details on transition execution semantics can be found
in [93, 256].

The UML Profile for Schedulability, Performance, and Time enables ad-
vanced annotation of timing and performance information within the behav-
ioral UML diagrams. Profiles are used to specialize UML for a restricted area
of application. The SPT profile is intended to standardize the expression of
issues related to timing and performance within a UML model. It provides
a set of stereotypes and tagged values specializing UML without violating its
existing semantics. In Fig. 3.5, such items are attached to the corresponding
model items by dashed lines.6

6 The enclosing apostrophes of values are omitted in this figure as well as all follow-
ing UML-SC material, in order to save space and improve readability. An example
would otherwise read RTduration=(‘exponential’,‘36’)
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stereotype tagged value

A

<<RTdelay>>

<<RTdelay>>

<<PAstep>>

do / ac2
exit / ac3

entry / ac1

<<RTdelay>>

{RTduration=(percentile, 95, 1)}

{RTduration=6}

{RTduration=(exponential, 36)}

{PAprob=0.7}

B

Fig. 3.5. UML Statechart with SPT inscriptions

Table 3.1. Example stereotypes and tagged values

Stereotype Tagged value Meaning

RTdelay RTduration = 6 Fixed duration of 6

RTdelay RTduration = Exponentially distributed
(exponential, 36) delay with mean 36

RTdelay RTduration = Delay that is distributed such
(percentile, 95,1) that the random variable value is

smaller than 1 with probability 95%

PAstep PAprob = 0.7 The probability of the
corresponding choice is 70%

Stereotypes indicate the type of a model element. Tagged values contain
a property name and a value, and thus assign information about the specific
instance of a stereotype. <<RTdelay>> is an example for a stereotype. It is
mapped to an activity or a state transition. Its tagged value RTduration
specifies the duration of the activity or transition. A detailed description of
the numerous stereotypes and associated tagged values is outside the scope of
this work; the reader is referred to [93, 255].

Table 3.1 lists some stereotypes and tagged values that can be used for
the specification of time and probability values. We assume model time to be
unit-less here, although one may also use time units in the specification. From
the later examples it becomes obvious that the existing stereotypes are not
yet perfect for a natural description of performance-related issues. They have
been used here because they are available in the current UML definitions;
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however, it is expected that improvements of the description will be proposed
and adopted in the future.

A SDES interpretation of Statecharts is intentionally left here, although
it should be possible in principle based on a clear definition of the Statechart
semantics [155]. The basic behavior would be very similar to the one of au-
tomata due to their equivalences. Pseudostates would lead to intermediate
vanishing states. Orthogonal composite states are no problem because actions
in SDES models are concurrent, and the SDES state may be composed of
different variable states. However, through the translation of UML-SC models
into stochastic Petri nets as shown in Sect. 3.5, a performance evaluation is
indirectly possible without an explicit SDES interpretation.

3.5 Transformation of Statecharts into Stochastic
Petri Nets

The UML [256] including its profiles has gained increasing acceptance as a
specification language for modeling real-time systems [93]. For this application
area it is especially important to enable quantitative predictions in an early
design stage, because timeliness and dependability must be ensured. However,
UML models are mainly intended for a structural and functional description
of systems and software. Hence the models are not directly analyzable in the
sense of a quantitative performance evaluation. An approach to transform
one model class of UML into stochastic Petri nets for their later evaluation is
therefore proposed in the following.

We consider the UML in combination with its Profile for Schedulability,
Performance, and Time (SPT, [255]), which has been introduced as a specifi-
cation language for the design of real-time systems recently. The derivation of
quantitative measures from these models is an open research issue. Two main
strategies exist to retrieve performance measures from UML models. The di-
rect way requires the development and application of an analysis method that
operates directly on the UML specification. The second, indirect way consists
of mapping the UML specification to an established performance model such
as a stochastic Petri net or a queuing network model. Quantitative measures
can then be obtained by applying existing analysis methods and tools for the
chosen performance model. We consider the indirect way in the following,
because in this case a reuse of established knowledge for the analysis of the
model is possible. Furthermore there are numerous software tools available
that support the quantitative analysis of the resulting models (see Chap. 12).

Both strategies have in common that quantitative system aspects such as
frequency, delay, or service execution time have to be specified in the UML
model, as well as performance measures. The mapping of UML into a perfor-
mance model requires rules that specify how certain UML fragments have to
be interpreted in the performance model context. In the resulting performance
model, the semantics of the model have to be preserved. It is required that the
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timing behavior from the UML is transfered equivalently. Finally, the results
of the performance evaluation need to be interpreted in terms of the original
UML model.

A requirement for the modeling of real-time systems is to specify deter-
ministic and even more general timing behavior in addition to the analytically
simple exponential case. Our goal is to translate UML-SC annotated following
the SPT profile into stochastic Petri nets with nonexponentially distributed
firing times.

Only a reduced set of UML-SC elements is considered for now [308]. States,
transitions, and Choice pseudostates were selected, allowing to model and
evaluate a wide range of quantitative issues including the case study presented
in Sect. 14.3.2. The translation of other UML-SC elements like composite states
and the remaining pseudostates are the subject of current work [307].

3.5.1 States

Figure 3.6 depicts a simple UML Statechart example with states A and B as
well as a transition and some annotations.

Time may be consumed within each state during the execution of the
optional entry, do, and exit activities (ac1 . . . ac3 in the example). Elaps-
ing time is modeled in a Petri net by a token in a place with a subsequent
timed transition. A corresponding example of how the simple example is
translated is shown in the lower part of Fig. 3.6. The exponential transition
Tenter A represents the entry activity ac1 with an exponential distribution
with parameter λ = 1/36 such that the mean delay is 36. This is due to the

{RTduration=2}

exit / ac3
do / ac2

entry / ac1

A

B

<<RTdelay>>

{RTduration=(exponential, 36)}
<<RTdelay>>

<<RTdelay>>

{RTduration=6}

Texit ATenter A Ttrans AB
τ = 6λ = 1

36 τ = 2
Tdo A

exit A out A enter Bin Aenter A

Fig. 3.6. Basic state translation example
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RTdelay specification of RTduration = (exponential, 36). The resulting
transition connects place enter A (entering state A) to place in A (in state A).

The do activity ac2 has no associated time specification and is therefore
assumed to require no time. It is represented by the immediate transition
Tdo A. The deterministic PN-transition Texit A represents the exit activity
ac3 with the constant delay of 6 time units. The place out A in the SPN repre-
sents the point when the UML-SC state A has been left, after the exit activity
is finished. The destination state B has not been entered at this point. This
happens when the deterministic transition Ttrans AB fires, which represents
the state change between A and B. The timing annotations are used for the
Petri net transition times.

Regardless if there are optional activities specified for a state, we always
follow the logical and temporal order of the optional activities. An immediate
transition is created in the Petri net translation for each activity that does
not exist or for which no time is specified.

Thus the translation of a state X always results in a Petri net fragment
containing places and transitions in the following order: place enter X →
transition Tenter X (entry activity) → place inX → transition Tdo X (do ac-
tivity) → place exit X → transition Texit X (exit activity) → place out X.
From the exit place there are appropriate transitions for every possible sub-
sequent UML-SC state.

3.5.2 Transitions

The transitions in an UML-SC may consume time and are translated into cor-
responding Petri net transitions. The naming convention is as follows: For a
UML-SC transition from state A to state B the resulting Petri net transition
is named Ttrans A B. It connects the places out A and ent B (see Fig. 3.6).
UML-SC transitions without any timing annotation are considered to not con-
sume any time. They are translated into immediate transitions in the Petri
net model. The SPT profile provides the <<RTdelay>> stereotype with its
tag RTduration [255] to express fixed delays. The tag is of type RTtimeValue.
A UML-SC transition with a constant delay such as the one connecting states
B and C in Fig. 3.7 is mapped to a deterministic Petri net transition with the
given delay.

UML-SC transitions may have an exponentially distributed delay like the
one connecting states A and B in Fig. 3.7b. We translate such a UML-SC tran-
sition into an exponential transition in the Petri net as shown. The parameter
of the exponential distribution, the firing rate λ, is set such that the mean
delay equals the given time, λ = 1/specified delay.

Quantiles are another important way to express incomplete knowledge of a
delay distribution. We propose an extension of the RTtimeValue syntax sim-
ilar to the PAperfValue. A percentile construct is introduced (percentile,
<percentage>, <time value>). This enables for example the specification
of a UML-SC transition with a delay of 5 time units in at most 75% of all
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A B C D

<<RTdelay>>
<<RTdelay>> {RTduration=2} <<RTdelay>>

{RTduration=(percentile, 75, 5)}{RTduration=(exponential, 5)}

Ttrans AB

out A enter B

Ttrans BC
τ = 2

out B enter C

Ttrans CD
λ = − ln 0.25

5

out C enter D

λ = 1
5

Fig. 3.7. Translation of Statechart transitions

<<PAstep>>
{PAprob=0.7}

{PAprob=0.3}
<<PAstep>>

B

C

A

out A enter B

enter C

0.7
Tchoice B

Tchoice C
0.3

choice

Ttrans Ac

Fig. 3.8. Choice pseudostate and its translation

cases: RTduration = (percentile, 75, 5) as in the rightmost example in
Fig. 3.7. We assume that in these cases the delay is exponentially distributed.
It is then possible to calculate the parameter λ of the resulting exponential
transitions in the stochastic Petri net for a percentage p via its distribution
function: F (x) = 1 − e−λx = P{X ≤ p} and thus λ = − ln(1 − p)/x. For the
example in Fig. 3.7, this results in an exponential transition Ttrans CD with
rate λ = − ln 0.25/5 ≈ 0.2773.

Probabilistic Choice

In addition to states, transition and time annotations, another important
element of stochastic discrete event systems are nondeterministic choices. The
choice pseudostate serves this function in UML-SCs. The left side of Fig. 3.8
shows an example: after state A is left, there is a choice between transitions
to states B or C. Choices are depicted as diamonds.

For the performance evaluation of a system, probabilities must be attached
to the different outcomes of a nondeterministic choice. We follow a proposal
to consider a UML-SC transition as a special kind of a <<PAstep>> of the
SPT [239]. The PAprob tag is used to express the relative probability of each
path, just like the firing weights of immediate transitions in a Petri net (into
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which they are in fact translated). It should be noted that in UML-SCs a
guard and actions may be attached to the transitions connected to a choice
pseudostate. Guards may disable paths that can not be taken, and could thus
be translated into Petri net transition guards.

Figure 3.8 shows the proposed translation of the choice pseudostate. The
exit action of state A leads to the pseudostate. In the shown case there is
no annotation for the exit action, thus an immediate transition Ttrans Ac is
created. The c denotes the choice pseudostate here. A token in place choice
marks the pseudostate itself. Such a UML-SC pseudostate naturally maps to a
vanishing state in the resulting Petri net. From the choice place there is one
immediate transition for every possible choice in the UML-SC model, namely

TranslateStatechart (UML-SC)

Input: Statechart model UML-SC
Output: stochastic Petri net model SPN

(∗ Translate UML-SC states ∗)
for ∀s ∈ States(UML-SC) do

create places enter s, in s, exit s and out s
create transition Tenter s connecting enter s and in s
set delay(Tenter s) = RTduration(sentry)
create transition Tdo s connecting in s and exit s
set delay(Tdo s) = RTduration(sdo)
create transition Texit s connecting exit s and out s
set delay(Texit s) = RTduration(sexit )

(∗ Translate UML-SC choice pseudostates ∗)
for ∀s ∈ Choices(UML-SC) do

create place choice s
for ∀t ∈ Outgoing transitions from s do

let d denote the destination state of transition t
create transition choice d between choice s and enter d
set weight(choice d) = PAprob(t)

(∗ Translate UML-SC transitions ∗)
for ∀t ∈ Transitions(UML-SC) do

let s and d denote the source and destination states of t
if d ∈ States(UML-SC) then

create transition Ttrans sd connecting out s and enter d
set delay(Ttrans sd = RTduration(t)

else create transition Ttrans sc connecting out s and choice d
set delay(Ttrans sc = RTduration(t)

return SPN

Algorithm 3.1: Translation of a UML Statechart into a stochastic Petri net
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Tchoice B and Tchoice C for the example. The weights of the resulting con-
flicting immediate transitions are simply set according to the probabilities
that have been specified with the PAprob tags.

3.5.3 A Transformation Algorithm

An algorithmic formulation of the simple translation rules from a UML-SC
UML-SC into a stochastic Petri net model SPN that have been informally
explained above is presented.

The algorithm depicted in Fig. 3.1 lists the necessary steps of the trans-
lation. All basic UML-SC elements are translated one by one and connected
as necessary. The resulting stochastic Petri net contains transitions for all
optional actions and state transitions in the UML-SC. Because many of them
are empty or not specified in detail using a performance inscription, a big
part of the resulting transitions are immediate and do not contribute to the
model behavior. These sequences of immediate transitions are not wrong, but
unnecessary and clutter the model (see Sect. 14.3.2 for an example).

A trivial simplification based on a check of the model structure can remove
these elements: For each pair of places pi and pk, which are connected by one
immediate transition t such that t is the only transition in the post- or preset
(p•i = •pk = t), the transition t is deleted and the two places pi and pk are
merged.

A prototype of the translation algorithm has been implemented in the
software tool TimeNET, which is covered in Sect. 12.1. An Open Source mod-
eling environment is used for the creation of UML-SC models. The translation
algorithm generates a Petri net model in the TimeNET format.

Notes

Sections 3.4 and 3.5 are based on joint work for which first results have been
published in [307–309].

Introductions and overviews of automata are given in [42, 168], while au-
tomata extended by time are covered in [8, 9, 42]. Background on stochastic
automata and their underlying stochastic process is contained in [42, 143].
Their numerical analysis is, e.g., covered by [78, 298]. Stochastic automata
models of parallel systems are analyzed efficiently using a Kronecker algebra
approach in [267].

Further literature about Statecharts include [153–155]; the UML [256] con-
tains Statecharts as one of the diagram types. Their use for real-time system
modeling is covered in [93].

There are several approaches aiming at a quantitative analysis of anno-
tated UML diagrams, mainly in the area of software performance evalua-
tion. Merseguer et al. present a systematic and compositional approach [26,
239, 240]. This evaluation process includes the translation of extended UML
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diagrams into labeled generalized stochastic Petri net (GSPN) modules and
finally the composition of the modules into a single model representing the
whole system behavior [232]. Only exponentially distributed times are taken
into account and the resulting Petri net is thus a labeled GSPN. King and
Pooley [204,205,268] are also working on the integration of performance eval-
uation into the software design process based on UML. Again GSPNs are
used for the performance evaluation. An intuitive way of mapping UML-SC
into GSPNs is introduced. A state in the UML-SC is represented as a place
in the GSPN and state transitions in the UML-SC are represented as GSPN
transitions. The resulting GSPNs are composed based on UML collaboration
diagrams. Hopkins et al. propose the introduction of probabilistic choice and
stochastic delay into UML [169] in this context.

Lindemann et al. presented an approach for the direct generation of a
generalized semi-Markov process (GSMP) from an annotated UML state di-
agram or activity diagram in [225]. The diagrams are enhanced by specifying
deterministic and stochastic delays. No intermediate model is used. The veri-
fication of timed UML Statecharts against time-annotated UML collaboration
diagrams is proposed in [208], based on a translation of UML Statecharts into
timed automata. UML statecharts are extended by discrete-time distributions
to enable probabilistic model checking in [181]. Markov decision processes are
used as the basis, but timing information is not explicitly used.
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Queuing Models

This chapter deals with another classic model type of SDES, namely queuing
models. Their underlying idea comes from the everyday experience of requiring
some sort of service, which is restricted in a way that not all concurrent
requests can be answered at the same time. We are forced to wait for an
available teller at a bank, a seat in a cafeteria, or when crossing the street.
When it is our turn, we block the service for others that are waiting and release
the server for the subsequent customer afterwards. The same sort of behavior
is frequently found in technical systems, in which we are mainly interested in
this text. Communication packets queue at a switch, data base access requests
are performed one at a time, or parts pile up in front of a bottleneck machine.

The main reason for not having enough servers for every possible request
is that installation and maintenance of servers cost money, and it is therefore
not economically reasonable to have too many of them. On the other hand,
customers often request service in an unknown and stochastic pattern, which
means that an infinite number of servers would be required in theory to fulfill
all requests in parallel.

Common to all of the mentioned examples are the basic elements of a
queuing system: customers arrive, wait in a queue, are being served, and
finally leave the system. The queue length is restricted in practice, and there
might be several servers providing service concurrently. A queuing system
(QS) is a model in which only one combination of a queue and corresponding
server(s) are of interest, together with their customer arrivals and departures.
A generalization of this simple model may contain several individual QS, and
is called a queuing network (QN). In the latter case obviously some additional
issues are of importance, for instance the queue that a customer enters after
leaving another one or whether he leaves the model altogether.

Queuing theory covers models of this type and has been very success-
ful in creating formulas and algorithms for the computation of performance
measures from them. Typical questions are the number of waiting customers,
their waiting and service time, throughput and utilization of servers, or the
probability for a customer to be blocked or lost because of a full queue.
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In comparison to the level of abstraction of other discrete event models
covered in this text, queuing models can be seen between automata and Petri
nets. The description is obviously on a much higher level w.r.t. automata be-
cause the reachability graph of a small QS (and thus a behaviorally equivalent
automaton) might already be quite complex. Petri nets are a more powerful
description technique because QN models can in principle be transformed into
one of them,1 but not vice versa. The biggest difference is that synchroniza-
tion between customers can be described by Petri nets, but not with a classic
queuing model.

The chapter is organized as follows: simple queuing systems as well as
networks of queues are informally introduced in the section below. A more
formal definition of standard QN is given in Sect. 4.2, and their mapping to an
equivalent SDES is shown in Sect. 4.3. Final notes discuss more sophisticated
QN and point to literature relevant to the topic.

4.1 Informal Introduction

Figure 4.1 shows an example of a simple QS. The way of drawing a queuing
system is not formally defined, but the one used in the figure is a very pop-
ular one. Each customer arrives from the left in the figure and is stored in
the queue, if there is an available slot. Customers may of course model any
entity of interest in a queuing model, such as a vehicle at a gas station, a
passenger waiting at a ticket counter, a document in an office workflow, or a
communication packet of a FTP data transfer.

After some waiting time the customer receives service from a server. This
requires some time as well. The customer leaves the model after the service is
finished. Depending on the type of queue, its waiting slots, and the number of
servers in the model, the queue may contain empty slots, waiting customers,
and the ones currently receiving service.

The following details need to be specified for a complete description of a
queuing system QS:

– The arrival pattern of customers describes the times at which new cus-
tomers enter the model. The individual arrival times are usually unknown,
which leads to a stochastic model for this item. The interarrival time be-
tween two successive customer arrivals is thus given by a probability dis-
tribution function. Many simple models assume that the stochastic arrival
behavior does not change over time, i.e., it is a time-independent stationary
process.

– A restriction on the number of waiting slots is given by the system ca-
pacity or storage capacity. It should be noted that customers being served

1 There are, however, extensions of queuing networks with quite complex behav-
ior, for which this might only be possible with a colored Petri net. Some of the
extensions are mentioned in the final notes of the chapter.
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cusomer being served
waiting customers

free waiting slots

Queue Server

customer customer
arrival departure

Fig. 4.1. A queuing system

also occupy one waiting slot, although they are not actually waiting. The
amount of waiting room may also be unlimited.

– The selection of the next customer to be served if there is an idle server
is given by the queue discipline. Fair queuing for humans usually means
that the one who came first will be selected (first come, first serve; FCFS
or FIFO). Other patterns are obviously possible, and make sense in many
technical systems. Random order or last come, first served (LCFS or LIFO)
are two of them. In addition to that, certain customers may have a higher
priority and are thus served before the other ones.

– There is only one server working inside one queuing system as the simplest
case; any natural number of servers is however possible. There are even
cases in which an infinite number of servers is assumed to be available; in
practice this means that every single customer receives service in parallel,
and that there is no waiting at all.

– The service itself is a process that is most importantly described by the
time that it takes for one customer. The service pattern is similar to the
arrival pattern in that it is not necessarily known a priori, and therefore
described by a probability distribution function.

– An additional issue about the arrival of new customers is the question
whether customers leave the model completely and arrive at the queue
from an unrestricted population. This case is called an open queuing sys-
tem as opposed to a closed one, where customers come from a pool of
fixed size. In that case customers may obviously only arrive at the queue
if they are not all waiting or receiving service, and the population size
needs to be known.

Following Cassandras and Lafortune [42], arrival and service processes are
stochastic model parts of the QS, number of servers, and waiting slots struc-
tural parameters, while the details of customer acceptance, selection, and ser-
vice differentiation are summarized as operating policies.

In a Markovian queuing model, stochastic patterns are time-independent
and described by exponential distributions. The interarrival rate is denoted
by λ, and the service rate (or departure rate) by μ.
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Kendall’s Notation

Queuing systems are commonly described with an abbreviated notation. The
individual settings of the mentioned attributes for a queue are given in a
standardized manner, separated by slashes (A/B/m/K/N/Q). The type of
interarrival-time distribution for arrival (A) and service (B) are denoted by
M for Markovian, D for deterministic, and G for general. Number of servers
m, system capacity K, and population size N are specified by a number or
∞ if they are unlimited. An abbreviation such as FCFS denotes the queuing
discipline Q.

Default values (M for distributions, unlimited system capacity, one server,
and FCFS discipline) may be omitted, and even the separating slashes are only
necessary if the notation would otherwise be misunderstood. However, differ-
ent versions exist, which do not mention all of the attributes. The notation
for an open QS does not incorporate a population size.

Examples include the M/M/1 queue: a QS with exponentially distributed
arrival and service times, single server, unlimited waiting room, and FCFS
discipline. A more complex QS is, e.g., denoted by M/D/m/K, which means
an open m-server queue with K waiting slots, exponential customer interarrival
times, and deterministic service time.

Queuing Networks

QS models are sufficient for single queuing situations, and an obvious advan-
tage of their simplicity is the availability of efficient solution methods. There
are, however, many technical systems comprising numerous waiting lines and
service requests. Customers may arrive from outside the system, leave it after
service, or are probabilistically routed to another queue after service. Models
with such an extended combination of several QS nodes are called queuing
networks (QN). Any QS is thus a special case of a simple QN.

Closed QS can for instance be interpreted as a circular QN with two nodes:
one for customers that are actually waiting and receiving service, and another
for customers that are currently not competing for service.

Figure 4.2 depicts an example of a QN. Parts to be processed by the
modeled production cell arrive from the left; a source of new customers is thus
connected to node Machine1. After the processing step in that machine, there
is a probability for each part to be sent to Machine2 or Machine3, in which
the second production step is carried out. Every part undergoes a quality
check in the Inspection station. A certain percentage of parts is finished as
a result and leaves the model. These parts are routed from node Inspection
to a sink of the model. The remaining ones enqueue at the Repair station
and are inspected again.

The example shown is an open network because customers (parts in that
case) cross the borders of the model when arriving or leaving. Networks with-
out sources and sinks are called closed, and the number of customers in them
obviously remains constant.
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Fig. 4.2. A queuing network example

The following issues thus need to be specified in a QN:

– All individual details described above for every QS node that is a part
of the QN. This includes the arrival patterns if the network is open. For
the later modeling of departures from the model, an imaginary sink node
without waiting and service is assumed, where customers vanish.

– The routing behavior of a customer describes to which subsequent queue
each customer is sent after service. This must be set for each pair of queues
individually. The sink node may be chosen as the destination to model
leaving customers.

– Finally, the initial customer population must be given for every node in
the QN.

The special case of a Jackson network requires the interarrival-times from the
outside as well as the service time at each node of the QN to be independent
and exponentially distributed, and a fixed probability rij for a customer to
be routed to node qj after service at node i. An efficient method for their
steady-state analysis is based on a product-form solution [177], which does
not require the construction of the reachability graph.

Performance Measures of QN

As for the other SDES models in this text, queuing systems and networks
are meant to obtain quantitative measures from them. An actual QN model
includes reward variables, for which the values should be computed by an
evaluation algorithm.

The following list describes the most important measures for QN.

– The probability that the number of customers in queue qi equals j is de-
noted by πj(qi). It represents a basic measure from which several others
can be derived. The loss probability or blocking probability, i.e., the prob-
ability that an arriving customer does not find an empty waiting slot, is
obviously a special case. This probability equals πn for queues with a finite
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system capacity of n. Another special case is the queuing probability, i.e.,
the probability that a customer arriving at a queue does not find an idle
server and is thus required to wait. If n denotes again the system capacity
(n might be infinity for a QS without waiting room restriction) and m
the number of servers at the queue of interest, the queuing probability is∑n

i=m+1 πi.
– The number of customers at a queue qi (the queue length) is denoted by

X(qi). It is an important measure to assess the utilization of waiting room,
work in progress, etc.

– An owner of a service facility will be interested in the server utilization,
which gives the amount of time that the server is actively serving a cus-
tomer. This amount is denoted by U(qi) for a queue qi. In the case of
a node with more than one server, this value equals the number of busy
servers.

– Another important issue is the number of customers served per time unit,
i.e., the throughput T (qi) of a queue qi.

– From the customer’s point of view, the customer waiting time at a queue
qi is interesting, which is denoted by W (qi). This time does only take into
account the “unproductive” waiting time before service starts.

– When the service time is added to the waiting time W , the system time or
response time is obtained. This measure is denoted by S(qi) for queue qi.

One of the most important results in queuing theory relates three measures:
The mean number of customers in a queue is equal to the product of mean
arrival rate λ and the mean system time at that queue.

E[X ] = λE[S]

This is known as Little’s Law and proved in Ref. [231]. Its power lies in its
independence of the type of arrival and service pattern. Moreover, it can be
applied to any subsystem with a defined boundary, and not only to a single
queue.

Per-customer delays would require a reward variable that accumulates
individual waiting times of all customers, and a division by the overall number
of customers that were in the queue. This cannot be described directly as one
reward variable in our framework. However, the values can be easily derived
in steady-state using Little’s law. The mean system time S(qi) per customer
at queue qi is thus given by

E[S(qi)] =
E[X(qi)]

λ

The pure waiting time per customer excludes the service time, and thus the
mean number of customers in the inspected subsystem is smaller by the uti-
lization value.

E[W (qi)] =
E[X(qi) − U(qi)]

λ
=

E[X(qi)] − E[U(qi)]
λ
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The necessary values of E[X(qi)] and E[U(qi)] can be derived by reward
variable definitions as stated below. From these results the mean waiting and
system times can be obtained.

4.2 Model Class Definition

A queuing network QN is defined as

QN = (Q, Λ, K, μ, M, R, I)

Q is the set of simple queuing systems or nodes with queuing space and
connected server(s) in the network. To simplify the following definitions of
node attributes, we number the finite number nodes such that

Q = {q1, q2, . . . , q|Q|}

and attributes of a single node can be written with the index number of the
node. The state X of one node is given by the number of customers currently
in the queue,2 incorporating both waiting and those being served.

X : Q → N

A complete state of the queuing network can also be written as a vector of
natural numbers

X ∈ N
|Q| =

(
X(q1), X(q2), . . . , X(q|Q|)

)

and the set of all theoretically possible states of a queuing network model is
denoted by X∗.

X∗ = {X | ∀q ∈ Q : X(q) ∈ N}

Arrival of customers from outside of the model can happen in an open
network. The interarrival time between two consecutive customer arrivals at
node qi ∈ Q is a random variable. The probability distribution for it is denoted
by Λ.3

Λ : Q → F+

The capacity or length of the queuing space of one node qi ∈ Q specifies
the number of waiting slots for customers. It is denoted by K and either a
positive natural number or infinity for unrestricted waiting space.

K : Q →
(
N

+ ∪ {∞}
)

2 Please note that this is intentionally denoted by the same symbol as the perfor-
mance measure queue length, because both have identical values.

3 See Sect. 1.4 for the definition of F+.
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Customers in a queue are being served if there is a server available for them.
The service time of a node is a random variable for which the probability
distribution is denoted by μ.

μ : Q → F+

There might be several identical servers available at one node, all serving
one queue. The maximum reachable degree of concurrency at a node, the
number of servers, is denoted by M and a natural number.

M : Q → N
+

If Mi > 1 we say that node qi is a multiserver node.
After being served at a node qi, a customer in a queuing network either

leaves the model or queues at another node qj . Leaving the system is captured
as being routed to a virtual sink node sink with index zero.4 The probability
for a customer to go from node qi to qj is denoted by the routing probability
rij . All routing probabilities are collected in the routing matrix R. If a cus-
tomer is routed to a queue that has already reached its maximum capacity,
the customer is lost.

r : Q × (Q ∪ {sink}) → R or simply R ∈ R
0...|Q|×0...|Q|

For an evaluation of the behavior we need to know the queue contents at
the beginning. The initial number of customers defines for every node the
number of customers stored at the start. This number must of course not be
greater than the queue capacity.

I : Q → N with ∀q ∈ Q : I(q) ≤ K(q)

RV specifies the set of reward variables of a queuing model. Four basic
types have been informally introduced above. Throughput of servers corre-
sponds to an impulse reward, while the other three measure types can be
expressed with a rate reward. We differ between the two types by using a
boolean variable rtype that denotes the type of reward variable. An addi-
tional parameter rexpr either specifies a state-dependent numerical expression
for rate-related measures or the queue of interest in the case of a throughput
computation.

∀rvar ∈ RV : rvar = (rtype, rexpr)
with rtype ∈ B

and

{
rexpr ∈ Q if rtype = False (throughput)
rexpr : X∗ → N if rtype = True (otherwise)

The four basic measures are then expressed by setting the variables as shown
in Table 4.1.

4 The “normal” nodes are numbered from one upwards.
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Table 4.1. Settings for queuing model reward variables

Symbol rtype rexpr

Customer probability πj(qi) True

{
1 if X(qi) = j

0 otherwise

Queue length X(qi) True X(qi)

Server utilization U(qi) True min
(
X(qi), M(qi)

)

Queue throughput T (qi) False qi

4.3 Representing Queuing Networks as SDES

Before we start with the actual SDES definition of a QN, a remark is neces-
sary. The node servers of the QN are obvious candidates for actions of the
corresponding SDES. However, there are other classes of actions, the first one
being indirectly introduced by the routing decisions. Remember that after
being served, a customer leaves its queue and is transferred either to another
queue or deleted from the system. The latter is described by a movement to
the sink queue. The transfer of a customer is an SDES action as well, and
is named transfer action in the following. It has priority over normal service
actions because it must be executed first and happens in zero time. Their set
is denoted by Trans .

The transfer actions could also be modeled locally within the actions by
using different action modes. However, this would imply a decision about the
later routing at the time when the service starts. This would not be a problem
as long as these decisions are fixed priorities; however, the actual decision is
made after the service in reality, and thus the QN model class could not be
extended for more complex cases.

The second set of additional actions are the ones related to customer ar-
rivals from outside of the model. These arrival actions need to be modeled
by actions Arr with their interarrival time distributions. As they are always
enabled, no additional state variables are necessary for them.

An SDES is defined as a tuple of state variables, actions, sorts, and reward
variables

SDES = (SV �, A�, S�,RV �)

to which a mapping of the queuing network definition is given in the following.
There is one state variable for each node of the QN storing the current

number of customers in the queue of the node. In addition to that we need to
capture the enabling of transfer actions. As there is one routing decision to be
made after a customer has received service at a node, there is one additional
boolean state variable per node that signals a finished service and thus the
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enabling of the corresponding transfer actions. We denote the set of these
boolean state variables by E.

SV � = Q ∪ E with |E| = |Q|

The sort of the SDES state variables is thus either a natural number as in the
QN definition or Boolean for the additional state variables.

∀sv ∈ SV � : S�(sv) =

{
N if sv ∈ Q

B if sv ∈ E

A normal state of the QN refers to one state of the corresponding SDES,
where all additional state variables E are False. The value of a state vari-
able from Q in a state refers to the number of tokens in the node of
the QN.

The set of SDES actions A� equals the set of servers of the queuing network
plus the transfer actions Trans and arrival actions Arr as mentioned above.
As we have one normal server (which may be multiple) and one arrival action
per node, and one transfer action per node pair plus the sink destination,
we define

A� = Q ∪Arr ∪ Trans with Trans = Q × (Q ∪ sink) and Arr = Q

There are no action variables necessary to describe a QN, thus no sort defini-
tion is given for them.

The set of all theoretically possible states Σ is a combination of the number
of customers X in the queues plus the enabling state of transfer actions E.
There is thus a natural number and a boolean value per node.

Σ = (N × B)|Q|

The condition function is used to capture the capacities of queues.

Cond�(a, σ) =

{
False if a ∈ Q ∧ σ(a) = (k, ·) with k > K(a)
True otherwise

The initial value of a state variable is given by the initial number of customers
of the corresponding node. Transfer actions are disabled initially.

∀sv ∈ SV � : Val0 �(sv) =

{
I(sv) if sv ∈ Q

False if sv ∈ Trans

There are no priorities defined among different servers of the QN. Transfer
actions have a higher priority than the service-related actions. Because such a
transfer action becomes enabled only after a service has finished, and service
takes some time, transfer actions are never in actual conflict with each other,
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and their priorities are defined to be the same. Arrival actions are assumed
to have the same priority as normal service actions.

∀a ∈ A� : Pri�(a) =

{
1 if a ∈ Q ∪ Arr
2 if a ∈ Trans

The enabling degree Deg� of a server is directly given by the number of
servers at that node. The actual enabling degree in a state depends on the
number of customers that are waiting in the queue to be serviced as well.
It is thus the smaller number of the QN enabling degree and the number of
customers. Transfer and arrival actions may not be concurrently enabled with
themselves.

∀a ∈ A� : Deg�(a) =

{
M(a) if a ∈ Q

1 if a ∈ Trans ∪Arr

VDeg�(a, ·, σ) =

{
min
(
n, M(a)

)
if a ∈ Q, σ(a) = (n, ·)

1 if a ∈ Trans ∪ Arr

An action of an SDES for a QN is completely described by the attributes of
a node server. No action variables are necessary because there are no different
variants or modes of servers.

∀a ∈ A� : Vars�(a) = ∅

Thus there is exactly one action mode for each node, |Modes�(a)| = 1, and
we omit the action mode in the following mappings of QN attributes to SDES
elements.

A QN server is active iff there is at least one customer in its queue, while
a transfer action is enabled if its corresponding state variable is True. Arrival
actions are always enabled.

∀q ∈ Q, σ ∈ Σ :

Ena�(q, σ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

True if a ∈ Q ∧ σ(q) = (n, ·) with n > 0
True if a ∈ Trans , a = (qi, qj) ∧ σ(qi) = (·, True)
True if a ∈ Arr
False otherwise

The delay of an action is distributed as specified by the service time func-
tion and zero for transfer actions. The interarrival time distribution of arrival
actions is defined in the QN net class.5

∀a ∈ A� : Delay�(a) =

⎧
⎪⎨

⎪⎩

1 − e−μ(a) x if a ∈ Q

1 − e−Λ(a) x if a ∈ Arr
s(x) if a ∈ Trans

5 s(x) denotes the step function, see Sect. 1.4.
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Weights of actions are used to decide which one is executed first if there
are more than one scheduled to do so at the same time. There is no corre-
sponding information in a QN, and thus the weights are just set to one. For the
considered class of queuing networks, the selection of differing weights for ser-
vice and arrival actions would not change the behavior, because the sequence
of service completions at the same time does not matter. The same applies
to transfer actions, because neither can be in conflict with different solution
results. The weights of transfer actions are given by the routing probabilities.

∀a ∈ A� : Weight�(a) =

{
1 if a ∈ Q ∪Arr
r(i, j) if a ∈ Trans ∧ a = (i, j)

If a service is executed, i.e., an active server has finished to serve a cus-
tomer, this customer is taken from the queue. Depending on the routing proba-
bilities the customer is transferred to another queue or deleted from the model.
However, if the randomly chosen destination queue of the customer is full or
the sink node sink, the customer is lost. The execution of an arrival action
leads to an additional customer in the associated queue, if the capacity is not
exceeded. The change of the state σ = (a, b)|Q| to a subsequent state (a′, b′)|Q|

by the execution of an enabled action a is defined as follows.

∀a ∈ A�, σ = (n, b)|Q| ∈ Σ, (n, b)i ∈ σ :

Exec�(a, σ)i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
max(n − 1, 0), True

)
if a ∈ Q ∧ a = qi(

min
(
n + 1, K(qi)

)
, False

)
if a ∈ Trans ∧ a = (·, qi)(

min
(
n + 1, K(qi)

)
, False

)
if a ∈ Arr ∧ a = qi

(n, False) otherwise

The set RV of the QN reward variables is mapped to the set of SDES
reward variables as follows. The last two elements rint� and ravg� specify the
interval of interest and whether the result should be averaged. Both are not
related to the model or reward variable; they correspond to the type of results
that the modeler is interested in. They are therefore set according to the type
of analysis and not considered here further.

There is one SDES reward variable for each QN reward variable such that

RV � = RV

The parameters of each reward variable are set as follows.

∀rvar ∈ RV � :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

rrate� = rexpr , rimp� = 0 if rvar = (True, rexpr)

rrate� = 0, ∀qi ∈ Q :

rimp�(qi) =

{
1 if qi = q

0 otherwise

⎫
⎪⎪⎬

⎪⎪⎭

if rvar = (False, q)
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Thus a rate reward given by the state-dependent numerical value rexpr is
earned in the first case. The second case covers throughput results, and an
impulse reward of one is collected if a server of the measured queue finishes
its service.

Notes

Queuing theory has its origins in the work of Erlang [99] in the area of tele-
phone system planning. Questions like how many telephone lines are nec-
essary to provide a certain quality of service (probability of having a free
line) for random phone calls lead to this development. Later work extended
the initial formulae to cover more complex queues, e.g., with non-Markovian
times and queuing networks [177]. The abbreviated notation has its roots in
Kendall [202].

Selected textbooks on the subject include [31, 149,207,305]. Queuing sys-
tems in perspective with other discrete event models as well as some software
tools for QN are described in Cassandras and Lafortune [42].

Important application areas include telecommunication and networks [25],
manufacturing [32], computer systems [31,220], traffic and transport systems,
and business management.

More complex queuing models than covered in this chapter have been
considered in the literature. Routing probabilities may for instance be state-
dependent, which can easily be captured by adding X∗ to the arguments
of r. The same applies to the distributions of the service and arrival times.
The model presented in this chapter assumed the loss of a customer that
tries to enter a full queue. Another possibility is blocking, in which case the
customer stays in the source queue until an empty slot in the destination
queue is available. This could be included in the definition by adapting the
enabling and execution functions.

Another extension of the QN model is to allow customer arrival and service
to happen in batches (also called bulk input or service). Batch sizes may be
fixed or random, and even depend on the model state. To include this in the
model of this chapter, a discrete probability distribution function describing
the batch sizes for all arrivals and services would need to be specified first.
Execution of arrival, service, and transfer actions would have to be adapted
to cover multiple customers.

The extensions listed so far are quite simple to adopt in the model of this
chapter. Things become a bit more complex if impatient customers have to be
taken into account. One possibility is balking: a customer may decide to not en-
ter a queue based on its contents. This can be modeled with a state-dependent
routing probability. Reneging or defection from queue happens when a cus-
tomer leaves the queue after having waited for some time. Additional ac-
tions would be required in the SDES model presented in this chapter, which
correspond to the customer actions in the queue.
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A principal extension of the model class is achieved when different cus-
tomer types are considered. Service times, arrival rates, and routing proba-
bilities can then be defined individually for each customer class. An example
are multiclass Jackson networks, for which still a product-form solution ex-
ists [18] under certain restrictions. The state of each queue then obviously
must be extended to a list of all customers, described by their class. SDES
action enabling and execution would need to be redefined to work with lists
instead of just the numbers of customers.

When different customer classes are adopted, queuing disciplines other
than FCFS change the performance results. The options considered in the
literature include last-come-first-serve, random selection, as well as priorities
of customer classes. Preemption of the running service can be considered in
the case of priorities.
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Simple Petri Nets

This chapter covers the use of classic stochastic Petri nets for the modeling
and evaluation of stochastic discrete event systems. They represent a graphical
and mathematical method for their convenient specification. Petri nets are
especially useful for systems with concurrent, synchronized, and conflicting or
nondeterministic activities.Thegraphical representationofPetri nets comprises
only a few basic elements. They are, therefore, useful for documentation and a
figurativeaidforcommunicationbetweensystemdesigners.Complexsystemscan
be described in a modular way, where only local states and state changes need to
beconsidered.Themathematical foundationofPetrinetsallows theirqualitative
analysis based on state equations or reachability graph, and their quantitative
evaluation based on the reachability graph or by simulation.

Petri nets come in many different flavors. Common to all of them is that
they contain places (depicted by circles), transitions (depicted by boxes or
bars), and directed arcs connecting them. A Petri net can thus be mathema-
tically classified as a directed, bipartite graph. Places may hold tokens, and
a certain assignment of tokens to the places of a model corresponds to its
model state (called marking in Petri net terms). Transitions model activities
(state changes, events). Just like in other discrete event system descriptions,
events may be possible in a state – the transition is said to be enabled in the
marking. If so, they may happen atomically (the transition fires) and change
the system state. Transition enabling and firing as well as the consequential
marking change are defined by the enabling rule and firing rule of the actual
Petri net class. In our understanding of SDES, activities may take some time,
thus allowing the description and evaluation of performance-related issues.
Basic quantitative measures like the throughput, loss probabilities, utiliza-
tion, and others can be computed. In the Petri net environment, a firing
delay is associated to each transition, which may be stochastic (a random
variable) and thus described by a probability distribution. It is interpreted as
the time that needs to pass between the enabling and subsequent firing of a
transition.



80 5 Simple Petri Nets

This text presents different Petri net model classes. Depending on the type
of tokens, we distinguish between standard Petri nets with identical tokens
(referred to as simple Petri nets here) and colored Petri nets . Tokens can
not be distinguished in the first model type and are therefore depicted as
black dots or just their number in a place. For many complex applications, a
more natural and compact description is possible if tokens carry information.
This lead to the development of colored Petri nets, of which two variants are
covered in Chap. 6.

The remainder of this chapter deals with stochastic Petri nets with iden-
tical tokens. A continuous underlying time scale of the stochastic Petri net
is adopted. An informal introduction into the class of stochastic Petri nets
(SPNs) with a small toy example is given in Sect. 5.1. The dynamic behavior
of an SPN is described informally in Sect. 5.2, followed by a formal definition
of SPNs in Sect. 5.3. The interpretation of an SPN model in terms of an SDES
covers Sect. 5.4. The chapter closes with some historical and bibliographical
remarks about Petri nets with identical tokens.

Relevant analysis techniques are presented in Part II. More complex ap-
plication examples from the fields of manufacturing and communication are
presented in Chaps. 13 and 14.

5.1 Introduction to Stochastic Petri Nets

Throughout this section the model class of generalized stochastic Petri nets
(GSPN) is introduced informally. This is done along the way of the stepwise
construction of a flexible manufacturing system (FMS) modeling example.
The model used here is a slightly changed version of a GSPN model presented
in p. 208 of [4]. Petri net model construction in a modular way and by refining
coarse-grain structures is demonstrated as a byproduct. New model elements
are explained when they are necessary. Other variants of stochastic Petri net
classes with more transition types than GSPNs are described in the final notes
of the chapter.

Tokens in a Petri net model the changing states and locations of objects,
while the places they are located in model buffers or attributes of the system.
The number of tokens in every place of a model corresponds to the overall sys-
tem state and is called Petri net marking. The natural choice for our example
is thus to model parts as tokens, and locations in which they might reside in
as places. Transitions model activities that change the system state or object
location. When an activity is executed, the transition fires. It changes the
Petri net marking by removing tokens from input places (the ones that are
connected to the transition by a directed arc), and adding tokens to the out-
put places. The number of tokens that are removed and added via one arc is
called the arc cardinality (or sometimes multiplicity). It is written besides the
arc in the graphical representation, but the default value of one is omitted.
Before it can fire, a transition must be enabled, requiring that enough tokens
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Fig. 5.1. First modeling step for FMS example

exist in its input places. Typical flows of objects like the path of parts along
their work plans can be modeled by sequences of transitions and places that
correspond to the subsequent production stages.

Figure 5.1 shows a first partial model for the FMS. The flexible manufac-
turing system has three machines, which are called M1 through M3. It handles
two types of products named A and B. Parts of type A go through machine 1
and machine 3, while parts of type B are processed by machine 2. The upper
part of the model corresponds to part A in its different stages: a token in
AinM1 means the part is processed by machine 1. The activity of manufactur-
ing part A in machine 1 is modeled by transition M1A. Part A in machine 3
and part B in machine 2 are modeled in a similar way by AinM3, M3A, BinM2,
and M2B.

All manufacturing steps take a certain amount of time. The associated
transitions are hence timed transitions, which are drawn as rectangles in the
figure. The firing delay of a transition is the amount of time that needs to
elapse between its enabling and firing. In a GSPN, the firing delays of all timed
transitions are individual random variables with an exponential probability
distribution function (c.f. Sect. 1.4). Each timed transition, therefore, has one
parameter that specifies the rate of the exponential distribution. Letters λ or
μ are normally used to denote these firing rates.

New raw material arrives in place choice. A decision about what type of
part should be produced from one part of raw material needs to be made at
that point, before the resulting work plans are started. Activities like this,
which typically take no time from the modeling point of view, are modeled by
immediate transitions. They might take some time in reality, but we decide
to abstract from that in the model. We will see later that this distinction
between timed and immediate activities can make the evaluation process more
efficient.

The firing of transitions partA and partB decides what kind of part will
be produced. Only one outcome of the decision is possible for a token in place
choice, which corresponds to a conflict between transitions partA and partB.
The decision should be made in the model such that a fixed percentage of
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parts of each type are manufactured. The conflict resolution can be influenced
accordingly by associating a firing weight to each of the concerned transitions.
In fact, every immediate transition has an associated firing weight, but usually
the default value of 1.0 is unchanged. Firing weights of 3 and 7 are set for the
two transitions as shown in the figure to achieve the desired behavior. Please
note that these values are usually not shown in the graphical model. Later on
the detailed semantics of firing weights is defined. Informally, they specify the
probability of firing a transition relative to the weights of all other conflicting
transitions. Transition partA thus fires in 3/(3 + 7) = 30% of all cases.

The first model reflected only a part of the original work plans for the two
parts. In fact, the manufacturing steps carried out in machines 2 and 3 can
be done on either machine for the two part types. We need to incorporate the
variants in the two work plans as well as the decision, on which machine the
actual processing is done. Figure 5.2 shows the resulting refined model.

Parts of both types may now be in machines 2 and 3. However, the model
needs to distinguish between them. As tokens in simple Petri nets are iden-
tical, the distinction must be made by a duplication of the corresponding
net portion. The manufacturing place inside machine 2 is now modeled by
places AinM2 and BinM2 (and similarly for machine 3). This is also necessary
to specify the possibly differing properties of both manufacturing steps in one
machine using one transition for each operation. For example, processing of
part A could take more time than for part B in machine 3. With the dupli-
cation it is easy to specify the corresponding firing delays of transitions M3A
and M3B.

Another difference to the previous model is the insertion of four immediate
transitions similar to AsM3. Its firing models the start of the processing of
part A in machine 3. The other three immediate transitions below AsM3 serve
the same purpose for parts A and B in machines 2 and 3. It is often a good idea
to separate the start from the ongoing activity in a Petri net model. Without
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Fig. 5.2. First refinement of the FMS model
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immediate transitions, the variants of the work plans would lead to conflicting
timed transitions. This would be a modeling error, because then the transition
who fires first would disable the other one, resulting in a conflict resolution
probability that would depend only on the firing speeds of the transitions. In
most models this needs to be treated separately.

An additional advantage of transitions like AsM3, which model the begin-
ning of an activity, is that the desired conflict resolution can be specified.
This might include a probability of a decision as it has been shown for transi-
tions partA and partB. In the case of the decision between the two machines
in the work plans, the desired behavior is that machine 3 should be used for
parts A, and machine 2 for parts B as long as there are any of them waiting. If
not, the machine may process parts of the other type. This machine allocation
strategy is assumed to be useful in the example because the machines need
less time for the mentioned steps. The outcomes of strategies like this one
can be evaluated using performance evaluation, to select the best one out of
several alternatives (c.f. Part II).

The described machine allocation is achieved in the model using inhibitor
arcs that connect place AwM23 with transition AsM2 and place BwM23 with
transition BsM3. Inhibitor arcs always go from a place to a transition, and have
a small circle at the transition in the graphical representation. A transition is
not enabled in a marking if the number of tokens in the place that is connected
by an inhibitor arc is at least as high as the cardinality of the inhibitor arc.
In the default case (as in the model), the transition may not fire if there is
any token in the connected place.

It should be noted that the same machine allocation behavior could also
be reached by associating a higher priority to transitions AsM3 and BsM2.
Immediate transitions have a priority that specifies which one of them should
be fired first in a marking. There is no specific firing priority associated to
timed transitions; they all share one priority level, which is less than that of
all immediate transitions.

To use firing weights and priorities to specify the later resolution of con-
flicts, the modeler must be sure to influence the reachability graph generation
in the desired way. Both are ways to tell what should be done in cases where
different activities are scheduled to be executed at the same time instant.
There is thus no timing constraint specifying which one should be executed
first. The notion of “first” is a bit strange in that context, because both hap-
pen at the same point in time. However, because of the general requirement
of atomic action execution, we need to select the one to be executed first.
Although the model definition allows for an unambiguous derivation of an un-
derlying semantics, i.e., the stochastic process, the modeler only works at the
model level. Firing weights are meaningful only locally inside the sets of tran-
sitions (and relative to the other ones) that are in conflict in a marking. Those
sets are called extended conflict sets (ECS) in the literature. The problem
during modeling is now that there is no direct way to specify which transi-
tions should belong to one ECS, except maybe to assign a different priority to
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transitions that should go into another one. If the modeler makes a mistake
due to an overlooked conflict, the model might not be correct. This is partic-
ularly hard to detect manually if a model is structurally constructed in a way
that there are transitions which are not in direct conflict, but for which the
order of firing leads to different model evolutions. This is mostly due to ex-
tended conflict sets in which transitions have different input places, or models
with subgraphs of immediate transitions with different priorities. The general
problem is known under the term of confusion and generally seen as a model-
ing error. There are approaches that ensure a confusion-free net by analyzing
the structure (“at the net level”), or by checking on-the-fly during the reach-
ability graph generation. We will not go into the details of this issue further
here; the problem has been extensively studied in the literature [4,53,70,303],
to which the interested reader is deferred. This topic is discussed in other
settings in this text as well, for instance in Sect. 7.1.

Until now, only the processing of parts has been considered. The model
shown in Fig. 5.2 reflects the work plans of the two parts. In addition to that
there are transport operations needed in the FMS. Likewise, in communica-
tion systems we have packet transfer operations in addition to information
processing stages. In our example FMS, an automated guided vehicle system
(AGV) and a conveyor move parts between processing stations. Moreover,
parts are transported on pallets throughout the system. The according model
refinements are included in Fig. 5.3.

Empty pallets that are waiting for raw parts to be mounted are modeled
by tokens in place emptyP on the left. The loading of a raw part corresponds
to transition loadP, which takes one pallet token and creates a token in place
loadedP. Usually such an assembly operation (between pallet and part) would
result in two input places of the corresponding transition. However, in our
case we assume that no shortage of raw material takes place, thus the always
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Fig. 5.3. Second refinement of the FMS example



5.1 Introduction to Stochastic Petri Nets 85

available raw parts do not need to be modeled. This is an implicit input over
the model boundaries.

During the first transport operation, a loaded pallet is transported by an
AGV from the loading station to the first processing operation of the part.
The start of the transport is modeled by sAGV1, in-transport state by agv1,
and the completion and delay by AGV1. The second transport moves parts
from machine 2 to 3, which is done by a conveyor belt. The corresponding
model parts are sConv, conv, and Conv.

Another extension concerns transporting the pallets finally back to the
initial buffer. When any one of the production steps carried out by machines 2
and 3 is finished, a part is completed and leaves the scope of the model. The
resulting empty pallet in place finished is transported back to emptyP by
the second AGV operation, which is modeled by sAGV2, agv2, and AGV2.
Patterns like this circle of moving pallets are often found in Petri net models
where objects are transported or change their status, while their total number
remains constant.

The model refinement explained so far considers all processing and trans-
port operations. What is still missing are resource constraints. Every operation
has been modeled by a starting immediate transition, a place, and a finishing
timed transition. We now add one place for every resource type we find in the
model, namely each machine, the conveyor, and the AGVs. The start of an
operation requires and blocks one resource, while the completion releases it.
Therefore, an input arc is added from the required resource of an operation
to its start transition, and an output arc from the timed transition back to
the resource place. Please note that the model contains only this simple type
of resource usage. It is obvious that multiple necessary resources of different
types could be modeled in the same way by adding more arcs.

In the case of the two AGV operations, a conflict may arise between the
two possible transports, corresponding to a conflict between immediate transi-
tions sAGV1 and sAGV2. The chosen Petri net model pattern assures a mutual
exclusion between operations that require exclusive use of a unique resource.

Related to the issue of resource constraints is the specification of the num-
ber of resources that are available initially. One token in each of the added
places models the availability or idle state of one resource of the corresponding
type. The initial marking of the model thus contains as many tokens in every
resource place as there are resources available. In our example, every machine
as well as the AGV is available only once. The conveyor place models available
pallet spaces on the conveyor belt, which is assumed to be three here. The
initial marking is depicted by black dots inside the place.

Transition Conv, the conveyor transport operation, has a special behavior:
the associated operation (and required delay) applies to every pallet that is
located on it. This is due to the fact that the transport of one part from
the start to the end of the belt needs the same time, independent of how
many pallets are otherwise located on it. To simplify the model, we still want
to specify the time of one transport as the firing delay of transition Conv.
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During the model evolution, the conveyor behaves as if there is one individual
transport operation for every single part on it evolving in parallel. This type
of behavior is often found in modeled systems, and is called infinite server
(in contrast to the standard single server) firing semantics like in queuing
models. It is depicted in the figure by IS near the transition.

All parts are transported on pallets. The number of available pallets thus
limits the overall number of parts in the system. More pallets may lead to a
better machine utilization and throughput, but they cost money and increase
the amount of work in progress. Place emptyP contains empty pallets, for
which the initial number is given by P. The marking of a Petri net model may
be depicted by black dots, a natural number, or an identifier like P for which
the value needs to be specified for an analysis.

More sophisticated features of GSPNs that have not been used in the exam-
ple include marking-dependent model elements. A marking-dependent arc
cardinality may be specified, which means that the actual number of tokens
to be removed or created in a place is set according to the current model state
during the model evolution. The use of marking-dependent arc cardinalities
can make a model elegant and readable, but might also lead to a confus-
ing behavior. One should restrict the use to cases in which they are easy to
understand, like in the case where all tokens are removed from one place.

Firing delay parameters of timed transitions as well as firing weights of
immediate transitions might also be defined depending on the marking. The
speed of a transition can, therefore, be changed according to the number of
tokens in a place. Timed transitions with infinite server semantics are a special
case, because in the simple case they can be treated as a transition where the
firing delay parameter is divided by the number of tokens in its input place.

It should be noted that the values of all marking-dependent attributes are
computed before the transition fires. This is important because the transition
firing might affect the marking from which its own attributes are depending.

Performance Measures

Performance measures need to be added to the structural Petri net model
before any meaningful quantitative evaluation. They define what is computed
during an analysis. A typical value would be the mean number of tokens in
a place. Depending on the model, this measure may correspond to the mean
queue length of customers waiting for service or to the expected level of work
pieces in a buffer. A set of elementary measures is given below, followed by
an explanation of how they are typically used.

For the definition of measures a special grammar is used, which follows
the one used in the software tool TimeNET (see Sect. 12.1). A performance
measure from the user’s perspective is an expression that can contain numbers,
marking and delay parameters, algebraic operators, and the following basic
measures :
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Fig. 5.4. Complete GSPN model of the FMS example

1. P{ <logic cond> } corresponds to the probability of a logic condition, usu-
ally containing a comparisons of token numbers in places and numbers.1

Example: P{#emptyP<3}.
2. E{ #<place> } refers to the expected number of tokens in a place. Ex-

ample: E{#conv}
3. TP{ #<transition> } computes the number of transition firings (inter-

pretable as the transition throughput). Example: TP{#M1A}

Typical ways of using performance measures are now informally explained
using the example in Fig. 5.4.

Buffer utilization can be measured with the number of tokens in the place
that models the buffer. The number of available empty
pallets before loading can be computed using a perfor-
mance measure E{#emptyP}. The same type of measures
are used for similar questions in different application ar-
eas, like communication packets in a buffer, vehicles in a
parking lot, and so forth. By adding the values for several
places, we can easily calculate the number of objects in
a subnet.

Machine utilization corresponds to a resource’s probability of being in one
of its states, namely to being working. The utilization
of machine M2 can thus be computed with a measure
P{#idleM2} > 0, because if there is a token in place
idleM2, the machine is not working. Similar measures
are used if we are asking for resource state probabilities
in other applications, like the utilization of a server, a
telephone line, or a worker.

1 Or any marking-dependent boolean function.
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Throughput is also an important issue for quantitative evaluations,
thinking of production capacity, communication link load,
or traffic intensity. The throughput of machine M1 in our
model equals the production of parts of type A (at least
in the long run, where it is equal to the added through-
puts of transitions M2A and M3A). Both values can thus
be computed with a performance measure TP{#M1A}.

Processing times and other delays can be computed indirectly using Lit-
tle’s Law (see p. 70), which states that the number of
customers (tokens) in a subnet is equal to the through-
put into the subnet times the mean time to traverse it.
The overall AGV transportation time for loaded pallets
(including waiting for an available AGV and the actual
transportation time) can thus be computed as the num-
ber of tokens in places loadedP plus agv1 divided by the
throughput of transition loadP:(
E{#loadedP} + E{#agv1}

)
/ TP{#loadP}.

5.2 The Dynamic Behavior of a SPN

A part of the FMS example is used in the following to informally explain the
semantics of a generalized stochastic Petri net, which define the dynamic be-
havior of the model. Figure 5.5 shows the selected part and its first considered
marking at the left.

It has already been stressed that places with tokens model states of a sys-
tem, while transitions stand for operations or actions. The dynamic behavior
is determined by the activation and execution of actions, which in turn change
the model state. In a Petri net, transition enabling models activation, while
transition firing corresponds to execution. The model state is given by the
Petri net marking.

Transitions in a Petri net are activated from a structural point of view if
there are enough tokens available in their input places. This means that for
every input arc directed to that transition, at least as many tokens as the arc
cardinality must be contained in the connected place. If there are inhibitor
arcs present at the transition, there must be fewer tokens in the connected
place than the inhibitor arc cardinality. If all these conditions are true, the
transition is said to have concession.

A transition with concession is not always allowed to fire in a marking,
because there might be other transitions with a higher priority having conces-
sion at the same time. Remember that immediate transitions have arbitrary
priorities, and are always prioritized over timed transitions. A transition is
thus said to be enabled in a marking if it has concession and there is no
other transition with a higher priority that also has concession. In the left
part of Fig. 5.5, only transition Conv has concession, and is thus enabled. It is
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Fig. 5.5. Model behavior: Markings 1 and 2

marked with a grey shadow in the picture to point this out. The transition has
no inhibitor arc, and there is a token available in the only input place conv.

The execution or completion of an activity corresponds to the firing of
a transition in a Petri net. A transition fires when it had concession over a
period of time given by its delay, provided that there are no other transitions
firing first due to their higher priority. During the atomic firing, the number of
tokens specified by the input arc cardinalities is taken from each corresponding
input place, and the number of tokens given by the output arc cardinalities is
added to every output place. Firing transition Conv removes one token from
conv, and adds one token to ConvFree and AwM23.

The subsequent marking after firing Conv is shown on the right of Fig. 5.5.
After the firing of a transition, a new marking is reached, and the enabling of
transitions must be checked again. In our example, transition Conv still has
concession, because there is one token left in place conv. It is, however, not en-
abled, because the two immediate transitions AsM3 and AsM2 have concession
too. The latter are both enabled, because they share the default priority for
immediate transitions. Transitions with concession are depicted with a thin
grey shadow. Transition AsM2 is enabled because there is one token in places
idleM2 and AwM23, while there is no token in place BwM23, which is connected
to it by an inhibitor arc. Markings in which at least one immediate transition
is enabled are somehow special, because they are left without spending any
time in them due to the instantaneous transition firing. Those markings are
thus called vanishing markings as opposed to tangible markings in which only
timed transitions are enabled.

The two enabled transitions both need the token in place of AwM23 to
fire. Therefore, they can not fire both. This situation is called a conflict,
and the evolution of the model behavior requires a decision, which one can
fire. It has been explained already that conflicting immediate transitions fire
with relative probabilities that are derived from their weights. For the two
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Fig. 5.6. Model behavior: Markings 3 and 4

transitions enabled now, no weight was specified, which means they both
have the default weight of one. The probability of firing either one of them is
thus 50%.

Let us assume that transition AsM3 fires, which leads to the marking shown
in the left part of Fig. 5.6. Nothing has been changed for transition Conv, which
therefore still has concession. Because of the token added to place AinM3,
transition M3A gets concession as well. There are no immediate transitions
with concession, thus the mentioned two timed transitions are enabled in the
shown marking.

For the further model evolution, we need to know the probability of each
transition to fire first. Moreover, for the later analysis, it is necessary to derive
the time that the model spends in this marking. This is specified by the timing
behavior of a timed Petri net. Let us first consider the simplest case in which
only one transition is enabled, just like transition Conv in the first marking
shown in Fig. 5.5. It is clear that the probability of firing this transition first is
equal to one, while the time that the model spends in the marking is directly
given by the firing time distribution of the transition.

In the general case, a remaining firing time (RFT ) is associated to every
timed transition, which counts the time that still has to elapse before the
transition fires. In a GSPN this time is always exponentially distributed (c.f.
Sect. 1.4), which makes the RFT handling much easier because of the mem-
oryless property of the exponential distribution. When a transition becomes
newly enabled, this RFT is set to a value that is sampled from the firing
time distribution of the transition. The RFT decreases with model time as
long as the transition has concession. When it reaches zero, the transition
fires and the RFT becomes undefined. If the transition loses concession, the
RFT is also set to undefined.2 If a transition is of type infinite server, one

2 If it is disabled temporarily while still having concession, the time does not change.
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RFT is maintained as explained for every set of input tokens that lead to
an independent transition firing. The resulting enabling degree of transition
Conv in the initial marking was 2, because there are two tokens on its only
input place. Hence two independent RFT were sampled.

In the subsequent second marking of our example Conv still had concession,
but was not enabled because of immediate transitions. The enabling degree
was one, because of the only token remaining in place conv. The RFT for
the transition was already set in the first marking, and is still running. In
the third marking (Fig. 5.6, left) transition M3A becomes newly enabled, and
a RFT is sampled for it therefore. The decision which one of the transitions
Conv or M3A fires first depends on the values of the corresponding RFT – the
one that reaches zero first (the smaller one) fires. We assume that Conv fires
in the third marking, leading to the marking shown right in Fig. 5.6. In this
final considered marking, transition M3A still has concession, but may not fire
because of the enabled immediate transition AsM2.

5.3 A Formal Definition

A stochastic Petri net can be formally defined as a tuple

SPN = (P, T, Π,Pre,Post, Inh, Λ, W,m0,RV )

with the elements described in the following.
P is the set of places, which may contain tokens. The marking m of the

Petri net associates a (nonnegative integer) number of tokens to each place.

m : P → N

The marking can also be viewed as a vector of natural numbers with the size
of the number of places.

m ∈ N
|P | =

(
m(p1),m(p2), . . . ,m(p|P |)

)

We denote by M the set of all theoretically possible markings of a Petri net.

M = {m | ∀p ∈ P : m(p) ∈ N}

T denotes the set of transitions, which contains the set of timed T timand
immediate transitions3 T im. It is quite obvious that a node of a Petri net may
either be a place or transition, and that a net should not be empty.

T ∩ P = ∅, T ∪ P �= ∅

3 The partition depends on the firing delay distributions of the transitions and is
thus given below.
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The priority Π is a function that maps every transition to a natural number.

Π : T → N

Higher numbers mean a higher priority, and only immediate transitions may
have a priority greater than zero. The priority thus implicitly defines a map-
ping to the transition types.

T tim = {t ∈ T | Π(t) = 0} and T im = {t ∈ T | Π(t) > 0}

In the graphical representation, transitions may be labeled with their priority.
This is usually left out for transitions having default priority, namely all timed
transitions and immediate transitions with priority equal to one.

Pre describes the multiplicities of the input arcs that connect places to
transitions. The most general case is a marking-dependent multiplicity of an
input arc. Thus Pre is defined as a function that maps each place-transition
pair together with a marking vector to a natural number (the arc cardinality).

Pre : P × T × N
|P | → N

For the simple case of a cardinality independent of the marking we write

Pre(pi, tj , ·) ∈ N

and if there is no input arc connecting place pi to transition tj , Pre(pi, tj , ·) = 0.
Post denotes the multiplicities of output arcs connecting transitions to

places. The definition is similar to input arcs.

Post : P × T × N
|P | → N

Inh specifies the multiplicities of inhibitor arcs, similar to the definition of
input arcs. A zero value means that there is no arc for a place-transition pair.

Inh : P × T × N
|P | → N

The delay Λ of a transition specifies the time that a transition needs to
be enabled before it fires. The delay is defined by a probability distribution
function (compare Sect. 1.4) that describes the possibly random delay time.

Λ : T → F+

W maps each immediate transition to a real number. This value is inter-
preted as the firing weight for immediate transitions.

W : T im → R

Firing weights for immediate transitions may be written near the transition
in the graphical representation, if the value differs from the default 1.
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Deg describes the degree of concurrency for each transition.

Deg : T → {SS , IS}

SS means single server and IS infinite server.
m0 denotes the initial marking of the model. Because m0 is a marking, it

is of the form
m0 : P → N

RV specifies the set of reward variables of the stochastic Petri net model.
Three basic types4 have been informally introduced in Sect. 5.1. From the
mathematical standpoint, there is no big difference between the first two cases,
because both are related to rate rewards. If we extend the notion of E{·} from
places to any marking-dependent expression, we can express probability-type
measures simply by assuming a numerical result of one if the logic condition
is true and zero otherwise (as it is done in some programming languages as
well, or understood as an indicator variable):

P{ log cond } = E{
{

1 if log cond = True
0 otherwise

}

Only two types of reward variables are left to be specified after this simplifi-
cation. This is done by a flag rtype that denotes the type of reward variable,
and a parameter rexpr that either specifies the marking-dependent expression
(E{rexpr}) or a transition for which the throughput should be computed in
the second case:

∀rvar ∈ RV : rvar = (rtype, rexpr)
with rtype ∈ B

and

{
rexpr : M → N if rtype = True (E-case)
rexpr ∈ T if rtype = False (TP-case)

5.4 An SDES description of SPNs

Remember that a stochastic discrete event system was defined as a tuple

SDES = (SV �, A�, S�,RV �)

The set of state variables SV � equals the set of Petri net places.

SV � = P

4 Recall the syntax: P for the probability of a condition, E for the expected number
of tokens in a place, and TP for the throughput of a transition.
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A marking of the Petri net is equivalent to a state of the SDES. The value of a
state variable in a state is given by the number of tokens in the corresponding
place in the marking.

The set of SDES actions A� is given by the set of transitions of the Petri net.

A� = T

The sort function of the SDES maps Petri net places to natural numbers.

∀p ∈ P : S�(p) = N

The set of all possible states Σ is defined by

Σ = N
|P |

The condition function is always true, because there are no restrictions on
the place markings.

Cond�(·, ·) = True

The initial value of a state variable is given by the initial marking (number
of tokens) of the corresponding place.

∀p ∈ P : Val0 �(p) = m0(p)

Transitions of the Petri net are the actions of the corresponding SDES.
The priority Pri� is the same as the one defined for the Petri net.

∀t ∈ T : Pri�(t) = Π(t)

The enabling degree of transitions is either 1 for infinite server transitions,
or ∞ for those of type infinite server. The actual enabling degree VDeg� in
a state returns the actual number of concurrent enablings in one state, and
equals thus the maximum number of possible transition firings in a state
for infinite server transitions. This number can be computed by dividing the
number of tokens in an input place of the transition by the arc cardinality of
the connecting arc. In the general case of several input places, the minimum
over the computed numbers is used. In any case the result needs to be rounded
downwards. In the presence of inhibitor arcs this might be a simplification.

∀t ∈ T,m ∈ M :

Deg�(t) =

{
1 if Deg(t) = SS
∞ if Deg(t) = IS

VDeg�(t, ·,m) =

{
1 if Deg(t) = SS

minp∈P, Pre(p,t,m)>0)

⌊
m(p)

Pre(p,t,m)

⌋
if Deg(t) = IS
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An action of a SDES for a SPN is completely described by the attributes
of a single transition of the Petri net. There are no different variants or modes
of transitions, there is no need for action variables.

∀t ∈ T : Vars�(t) = ∅

Thus, there is exactly one action mode for each transition, |Modes�(t)| = 1,
and we omit to mention the action mode in the following mappings of Petri
net attributes to SDES elements.

A transition of a SPN is enabled if and only if (1) there are enough tokens
in the input places of the transition, and (2) the number of tokens in places
that are connected to the transition by an inhibitor arc does not exceed the
arc multiplicity.

∀t ∈ T, ∀m ∈ M : Ena�(t,m) =
∀p ∈ P : Pre(p, t,m) ≤ m(p) (enough input tokens)

∧ ∀p ∈ P :
(
Inh(p, t,m) > 0

)
−→

(
Inh(p, t,m) > m(p)

)
(inhibitor arcs)

The delay of an action is distributed as specified by the Petri net delay
function.

∀t ∈ T : Delay�(t) = Λ(t)

With the delay of a transition defined, we can now formally decide whether
it belongs to the set of timed or immediate transitions. The latter type fires
immediately without a delay after becoming enabled, the firing time is thus
deterministically “distributed” with the result always being equal to zero.

T im = {t ∈ T | Λ(t) = F im}

The set of timed transition is defined as the ones not being immediate. How-
ever, we require the firing time distribution of timed transitions to not to have
a discrete probability mass at point zero, and to have an expectation greater
than zero.

T tim = T \ T im with ∀t ∈ T tim : Λ(t)(0) = 0

The weight of an action is determined by the transition weight in the
case of immediate transitions. For timed transitions, SPN do not define an
explicit weight, because the probability of firing two timed transitions at the
same time is zero. This is due to the fact that the continuous exponential
distributions have a zero probability of firing at a given point in time. However,
during a simulation, it is not impossible to have two timed transitions who are
randomly scheduled to fire at the same instant of time because of the finite
representation of real numbers in computers. We assume an equal weight of 1
for timed transitions to resolve ambiguities in these rare cases.

∀t ∈ T : Weight�(t) =

{
1 if t ∈ T tim

W (t) if t ∈ T im
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If an enabled action is executed, i.e., an enabled SPN transition t fires,
tokens are removed from the input places and added to the output places as
determined by Pre and Post. The change of the marking m to a subsequent
marking m′ is defined as follows.

∀t ∈ T,m ∈ M, p ∈ P : Exec�(t,m)(p) = m(p) − Pre(t, p,m) + Post(t, p,m)

The set of reward variables of the Petri net RV is converted into the set
of SDES reward variables as follows. The last two elements rint� and ravg�

specify the interval of interest and whether the result should be averaged. Both
are not related to the model or the reward variable definition of the Petri net,
but correspond to the type of results one is interested in (and the related
analysis algorithm). Hence they are set according to the type of analysis and
not considered here. There is one SDES reward variable for each Petri net
reward variable, such that

RV � = RV

and the parameters are set as follows:

∀rvar ∈ RV � :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

rrate� = rexpr , rimp� = 0 if rvar = (True, rexpr)

rrate� = 0, ∀ti ∈ T :

rimp�(ti) =

{
1 if ti = t

0 otherwise

⎫
⎪⎪⎬

⎪⎪⎭

if rvar = (False, t)

This ensures that in the first case the rate rewards are earned according to
the value of the marking-dependent expression of the Petri net, while in the
second case an impulse reward of one is collected if the measured transition
fires.

Notes

The foundation of Petri nets has been laid in Carl Adam Petri’s Ph.D.
thesis [263] on communication with automata in the early 1960s. One of
the main issues was the description of causal relationships between events.
Later work showed how the resulting models can be used to describe and
analyze concurrent systems with more descriptional power than automata.
The earliest results as well as the first books [262, 279] focus on qualitative
properties and structural analysis. Petri nets were later used in engineer-
ing applications and for general discrete event systems, some selected books
include [80, 88, 150, 290]. Petri nets together with their related way of inter-
preting, modeling, and analyzing systems characterizes them as a conceptual
framework or paradigm [291].
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As with SDES model classes in general, there are different subclasses of
Petri nets that are easier to analyze in exchange for certain restrictions in
their modeling power. Petri nets in which every transition has exactly one
input and one output arc are called state machines. The dual in which the
number of input and output arcs connected to every place equals one is coined
a marked graph. They only allow either conflicts or synchronization, respec-
tively. Free-choice nets allow conflicts only between transitions with the same
input places. Place/Transition nets are not structurally restricted, but do not
contain extensions such like priorities, inhibitor, or flush arcs. The mentioned
additions extend the expressive power of Petri nets to the one of Turing ma-
chines, but hinder some structural analysis techniques. This is, however, not
an issue for a quantitative evaluation as intended in this text.

Time has been added to Petri net models starting in the 1970s [238, 275,
289]. The use of random firing delays and the relation between reachability
graphs and Markov chains in the case of a memoryless distribution was subse-
quently proposed by different authors [246,248,251,300]. A literature overview
of timed Petri net extensions is given in [311].

Many classes of stochastic Petri nets (SPNs) with different modeling power
were developed since their first proposal. Firing delays of transitions are of-
ten exponentially distributed because of their analytical simplicity. The class
of generalized stochastic Petri nets (GSPNs, [4, 53]) adds immediate transi-
tions which fire without delay. The underlying stochastic process of a GSPN
and other variants of stochastic Petri nets is a continuous-time Markov chain.
Those Markovian SPNs are well-accepted because of the availability of soft-
ware tools for their automated evaluation. Chapter 12 lists some of them.
However, the assumption of a memoryless firing delay distribution is not re-
alistic in many cases and can lead to significant differences for the computed
measures. Transitions with deterministic or more generally distributed firing
delays are needed for the modeling of systems with clocking or fixed operation
times. Many technical systems of great interest from the fields of communica-
tion, manufacturing, and computing belong to this class.

Examples of Non-Markovian SPNs are deterministic and stochastic Petri
nets (DSPNs, [6, 229]) and extended deterministic and stochastic Petri nets
(eDSPNs, [67,130]), also referred to as Markov regenerative SPNs [57]. DSPNs
add transitions with fixed firing delay to the class of GSPNs, and eDSPNs in-
crease the modeling power further by allowing transitions with expolynomially
distributed firing delay. Expolynomial distributions can be piecewise defined
by exponential polynomials (cf. Sect. 1.4).

Stochastic Petri nets with a discrete time scale have been proposed
in [58, 247] among others, reference [311] contains a more thorough bibli-
ography on discrete-time Petri nets. This model type was later extended to
discrete (time) deterministic and stochastic Petri nets in [337, 338]. The lat-
ter are comparable with DSPNs w.r.t. their modeling power: immediate and
deterministic transitions are allowed, as well as geometrically distributed de-
lays. The notes on p. 154 briefly comment on the analysis of models with
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Fig. 5.7. Types of transitions in a stochastic Petri net

an underlying discrete time scale. A good overview of Petri net performance
models and analysis methods is contained in [15]. Please refer to e.g., [130]
for a more thorough annotated list of relevant references.

It has been mentioned above that the class of a stochastic Petri net (and
thus the available analytical methodology) depends on the used types of tran-
sitions. Figure 5.7 depicts the most important ones found in the literature
and used in this text. It should be noted that despite the various graphical
appearances the structural behavior of all these transitions is the same; they
only differ in the associated firing delay distribution.

Immediate transitions are drawn as thin black rectangles, and their firing
delay is zero. The other ones are called timed transitions, and contain types
where the firing delay is exponentially distributed, deterministic, or general.
Please refer to Sect. 1.4 for more details and the set of allowed general delays.

The presentation in this chapter has especially been influenced by the work
on modeling and analysis of GSPNs [4] and eDSPN models [130].

Evaluation techniques for stochastic Petri nets are explained in Part II of
this text. GSPN models of manufacturing systems are used in Chap. 13 for
an automated derivation of heuristically optimal parameter sets. Chapter 14
models and analyzes a train control application example with eDSPNs. Cre-
ation and analysis of Petri net models requires a software tool for nontrivial
examples. Chapter 12 contains more information on that issue, including the
software tool TimeNET [359], which has been used throughout this text.



6

Colored Petri Nets

This chapter describes stochastic colored Petri nets, which are especially
useful to describe complex stochastic discrete event systems. They can be
seen as an extension of simple Petri nets as covered in Chap. 5. Places and
transitions of a Petri net naturally map to buffers and activities or similar
entities. Objects that are created, changed, and moved through a system are
usually described by tokens in places. The application of classic Petri nets
to examples in which these objects carry some significant attributes leads
to cluttered models in which places and transitions need to be unfolded to
keep track of the individual attributes. These problems motivated the de-
velopment of high-level Petri nets, a set of net classes with distinguishable
tokens.

The introduction of individual tokens leads to some questions with re-
spect to the Petri net syntax and semantics. The attributes of tokens need
to be structured and specified, resulting in colors (or types). Numbers as arc
information are no longer sufficient as in simple Petri nets. Transition fir-
ings may depend on token attribute values and change them at firing time.
A transition might have different modes of enabling and firing depending on
its input tokens. The class of stochastic colored Petri nets that is presented
in the following sections uses arc variables to describe these alternatives and
is motivated by colored Petri nets as defined in [188].

Stochastic colored Petri nets are informally introduced in the first section.
The dynamic behavior of SCPNs is covered in the Sect. 6.2. A formal definition
of stochastic colored Petri nets as well as their interpretation in the SDES
framework is given in Sects. 6.3 and 6.4. The special case of colored Petri nets
with constant arc inscriptions is covered afterwards. The chapter closes with
some remarks, clarifying the differences of the used model class with respect
to other colored Petri net definitions. Application examples are presented in
Chaps. 15 and 16.
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6.1 Informal Introduction

This section informally introduces stochastic colored Petri nets in the sense
that is used in this text. It mostly points out differences to simple Petri nets,
which have been introduced in Chap. 5 already. The syntax of textual model
inscriptions is chosen similar to programming languages like C++ or Java; it
is completely specified in Backus Naur form in [327].

The main difference between simple Petri nets and colored models is that
tokens may have arbitrarily defined attributes. It is thus possible to identify
different tokens in contrast to the identical tokens of simple Petri nets. Most
of the added complexity of transitions, places, and arcs comes from this simple
extension.

6.1.1 Token Types or Colors

Tokens belong to a specific type or color, which specifies their range of at-
tribute values as well as the applicable operations just like a type of a vari-
able does in a programming language. It will be shown in the following that
types are important in the context of tokens, places, arc variables, and thus
transition behavior. The terms color and type are used synonymously in the
following.

Types are either base types or structured types, the latter being user-
defined. Table 6.1 lists the available base types in the software tool TimeNET
(see Sect. 12.1) on which this chapter is based. The types are for instance used
in the example model of Chap. 15, but could easily be extended if necessary.

The empty type is similar to the “type” of tokens in simple Petri nets.
Tokens of this type cannot be distinguished, they are depicted as black dots
and do not possess any attributes. Integers and real numbers are numerical val-
ues, which can be compared and used in arithmetic expressions. They are simi-
lar to int and double types in a programming language. Boolean values can be
compared, negated, and used in AND- and OR-expressions. Strings represent
character arrays as usual. String constants are enclosed in quotation marks like
"hello". Model times can be stored in attributes of DateTime type. It includes
the time in hours:minutes:seconds format and the date in month/day/year

Table 6.1. List of base types for stochastic colored Petri nets

Type Name Default value Examples

Empty type — • •
Integer int 0 123
Real real 0.0 12.29
Boolean bool false true, false
String string “ ” “hello”
Date and time DateTime 0:0:0@1/1/0 NOW, 14:12:15@11/03/2005
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Table 6.2. Example token type definitions

Type Element Element type Remarks

Product name string Product name
step int Production step number

Container id int Container identification number
contents Product The contained product

format, separated by a @ symbol. Time values can be subtracted resulting in
the number of seconds between the two times. Adding or subtracting integers
works in a similar way. Their comparison is defined as one would expect. The
current model time during an evaluation is denoted by NOW.

Structured types are user-defined and may contain any number of base
types or other structured types just like a Pascal record or a C struct. An
example would be the definition of a product and a container in a manufac-
turing example as shown in Table 6.2. Circular definitions are obviously not
allowed.

Notation of access to structured types as well as the specification of struc-
tured objects is done within braces {}. They enclose a list of attribute values
together with the attribute names to define the value of a complex token.
For the example in Table 6.2, a token of type Product could be specified
by { name = "lever", step = 2 }, while the notation of a Container ob-
ject might be { id = 42, contents = { name = "fuse", step = 6 }}.
Default values in token creations and unchanged attributes in token opera-
tions can be omitted. The empty type may not be used as a part of structured
types, and there is no textual notation for it.

The only allowed operation on a structured type is a comparison. Two
objects of a structured type are equal if all of their element attributes are
equal. Although an attribute of a structured type may be internally imple-
mented as a pointer, there are no references accessible at the model level.
Token objects may only be copied, it is not possible to have different refer-
ences to the same token or attribute object.

Types and variables are textually specified in a declarational part of the
model in the original definition of colored Petri nets [188]. The same applies to
structured types in the described SCPN model class. This is done with type
objects in the graphical user interface of TimeNET, but is omitted in the
model figures. User-defined types are given in the text whenever necessary.
Variable definitions are not necessary in difference to standard colored Petri
nets as explained later.

6.1.2 Places

Places are similar to those in simple Petri nets in that they are drawn as circles
and serve as containers of tokens. By doing so they represent passive elements
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of the model and their contents correspond to the local state of the model.
As tokens have types in a colored Petri net, it is useful to restrict the type of
tokens that may exist in one place to one type, which is then also the type
or color of the place. This type may either be a predefined base type or a
model-defined structured type. In any case it is shown in italics near the place
in figures. The empty type is omitted.

The unique name of a place is written close to it in figures as well as the
type. The initial marking of a place is a collection of individual tokens of
the correct type. It describes the contents of the place at the beginning of an
evaluation. There might be different tokens with identical attributes, which
makes them alike, but not the same. The place marking is thus a multiset of
tokens. Only the number of initial tokens is shown in drawings in this text,
while the actual tokens are listed elsewhere when needed. A useful extension
that is valuable for many real-life applications is the specification of a place
capacity. This maximum number of tokens that may exist in the place is shown
in square brackets near the place in a figure, but omitted if the capacity is
unlimited (the default). An example is given below.

6.1.3 Arcs and Arc Inscriptions

Places and transitions are connected by directed arcs as in any other type
of Petri net. An arc going from a place to a transition is called input arc of
that transition, and the connected place is also called input place (and vice
versa for output places and output arcs). In contrast to simple Petri nets,
where a number is the only attribute of an arc, the modeler must be able to
specify what kinds of tokens should be affected and what operations on the
token attributes are carried out when a transition fires. This is done with arc
inscriptions. Arc inscriptions are enclosed in angle brackets <> in figures.

Input arcs of transitions and their inscriptions describe how many tokens
are removed during a transition firing, and attach a name to these tokens under
which they may be referenced in output arc and guard expressions. They carry
a variable name in pointed brackets for the latter task, optionally extended
by a leading integer specifying the number of tokens to be removed from
the place. The default value for omitted multiplicities is one. A token from
the input place is given to the variable as its current value, and removed
from the place during firing. If a multiplicity greater than one is specified,
the corresponding number of tokens are bound to the variable and removed
during firing. Each input variable identifier may be used in only one input arc
of a transition to avoid ambiguities.

A transition’s output arcs define what tokens are added to the connected
place at the time of the transition firing. There are two general possibilities
for this: either existing tokens are transferred1, or new tokens are created.

1 Note that there is no theoretical difference between thinking of a transferred
token and a token from the input place that is deleted with an identical one that
is created in the output place.
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Fig. 6.1. Simple arc inscription example

In the transfer/copy case, the name of the chosen input token is used at the
output arc. The token that was bound to this input variable is moved to
the corresponding output place. The multiplicity of tokens must be the same
to avoid ambiguities, i.e., if three tokens are taken away from a place, there
is no possibility of transferring only two of them and arbitrarily removing
one. For the same reason, it is not possible to use the same input variable at
several output places. Arbitrary numbers of input token copies can be made
by creating new tokens and setting the attributes accordingly (see later).

Figure 6.1 shows two examples of transitions with arc inscriptions. The
trivial case of a token transfer without any attribute changes is depicted on the
left side. Transition Transport is connected to places InputT and OutputT,
and both have Product as their type. Transport is enabled by any token in
its input place InputT, which is bound to variable p. The token is transferred
from InputT to OutputT because the output arc inscription uses the same
variable p.

The model on the right of Fig. 6.1 depicts a slightly more complex example.
Transition Assembly has two input places InputA and Stock, from which one
product p1 and three products p2 are removed, respectively. The firing of the
transition transfers the p1-token to the output place OutputA, and changes
the attribute step to the new value 5. Tokens bound to input variables that
are not used on output arcs are destroyed at the end of the firing. This applies
to the three p2-tokens, in which model parts are assembled to p1.

New tokens of the output place type are created if no input variable is
specified at an output arc. The attributes of a new token are set to their
default values initially (cf. Table 6.1). The firing of transition Arrival in the
example shown in Fig. 6.2 creates a token of type Product in place InBuffer
with the default attribute values {name = "", step = 0}.

Attributes of new tokens can be set to specific values using the same syntax
as described earlier for transferred tokens. Individual attributes of a token (or
the value if it is a base type) may be set to a constant value of the type or to
a value that depends on other input tokens. Elements of a structured type are
set in braces {}. Firing of transition Pack in Fig. 6.2 removes a token p of color
Product from place InBuffer. It creates a new token of type int in Counter
with the value 3. An additional token with type Container is created in place
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Fig. 6.2. More complex arc inscription examples

Storage. Its attribute id is set to 5, while the contents attribute is set to
the value of the structured token that was removed from InBuffer.

Multiple new tokens can be constructed with a leading number and #-
symbol. The firing of transition Unpack in Fig. 6.2 creates two Integer tokens
in Ids. Their values are set to the id attribute of the consumed container token
c plus one. Operators are allowed in expressions as long as their resulting type
corresponds to the required one; see further for a list.

In the special case where an element of a structured token should be copied
to create a new token, it is not necessary to write down all member attributes
in assignments. The member attribute in brackets is sufficient. An example is
shown in the token creation in place Output. The product attribute of token
c is copied to construct a new token of type Product.

The type of the variables contained in the input and output arc inscriptions
is implicitly given by the type of the connected place and is thus not defined
by the modeler. Restrictions on the input tokens are modeled using transition
guards as described later. All variables in arc inscriptions of a transition t are
denoted as the transition variables of t.

6.1.4 Transitions

Transitions (drawn as rectangles with different shapes) model activities of the
system. They can be activated (enabled) when all necessary input tokens are
available and an optional guard function is true. Their firing models the occur-
rence of the activity and changes the marking of places with tokens (the state
of the system). There are different transition types with their corresponding
shapes: immediate transitions firing without delay are drawn as thin rectan-
gles, timed transitions bigger and empty, while substitution transitions (for
details see further) have black rectangles at the top and bottom.

Transitions have several attributes. The name is a string that uniquely
identifies the transition on the model page. The firing delay (timed transi-
tions only) describes the probability distribution of the delay that needs to
elapse between the transition enabling and firing. The examples in this text
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only use deterministic and exponentially distributed delays. The syntax for
their specification in the models is Exp(100) or 200 for a transition with
exponentially distributed or deterministic delay, respectively.

Immediate transitions have a firing weight (a real number) and a priority
(integer greater than 0) just like in simple Petri nets, with the same function.
Their default value is one in both cases.

Transitions in a colored Petri net have different firing modes depending
on the token attributes that they remove from their input places. In a state
of an SCPN all possible assignments of input tokens to their respective arc
variables (bindings) may be valid firing modes. A guard function can be used
to restrict the tokens for which a transition may be enabled. The guard is
a boolean function that may depend on the model state and the input arc
variables. It is shown in square brackets close to the transition in figures. The
transition is only enabled with a certain binding of tokens to variables in a
model state if the guard function evaluates to True for this setting.

Figure 6.3 shows examples for the usage of guard functions. Expressions
often contain a comparison of input token attributes with constants or other
input token attributes. Operators and syntax are explained below. Transitions
ToM1 and ToM2 may be in conflict when a token is in place Input. They decide
whether Product tokens are sent to M1 or M2. With the selected guards, all
tokens with attribute name equal to "bolt" are sent to M2. All other tokens
are sent to M2 only if M1 is busy, i.e., place AtM1 is not empty. #AtM1 denotes
the number of tokens in that place. The two transitions may never be enabled
together in a marking because of the capacity restriction of place AtM1 of one.
Transition Pack may only fire if there is a Container token available in place
ContBuf for which the identification number is stored in Ids. The default
guard function of a transition is empty, which evaluates to True by definition,
and is not shown in figures.

The server semantics specifies whether the transition might be concur-
rently enabled with itself or not, comparable with the Deg attribute of SPN
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Fig. 6.3. Examples of guard functions
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transitions. It may have the (default) value of single server, or infinite server
alternatively. The latter is depicted by a IS at a transition. Single server
semantics models the “natural” understanding of a restricted resource that
can only perform one action at a time (on one part/token). It thus means
that the transition may only be enabled with one binding at a time. Infi-
nite server stands for an arbitrary number of resources, from which one is
activated for every token (set) individually. All bindings that may be fired
together are enabled concurrently. An incoming token into an input place of
an already enabled single server transition is thus ignored, while a new tran-
sition enabling is generated for such a token in the case of an infinite server
transition. To avoid ambiguities in the model specification, we restrict infi-
nite server transitions to have exactly one input place and one variable in the
corresponding arc inscription.

6.1.5 Model Hierarchy

A SCPN model consists of pages in a hierarchical tree. There is exactly one
prime page, which forms the base of the tree structure, and to which other
pages are subordinated on different levels of hierarchy via substitution tran-
sitions. Hierarchical refinement and modular description of complex systems
is thus possible.

Substitution transitions act as a placeholder or association to a refining
subpage. They have no firing semantic as other normal transitions do. The
associated subpage is a place-bordered subnet, i.e., no transitions of the subnet
may have direct interactions with elements outside the substitution transition.
From the point of view of the upper level model, a substitution transition acts
like a generalized transition that may consume and create tokens as well as
store them.

Interaction of submodels with the surrounding model only takes place
via the places that are connected to the substitution transition. All of these
places are known in the submodel and are depicted there as dotted circles.
Arcs connecting substitution transitions do not require inscriptions, because
they only mark the connected places as known in the subnet.

Figure 6.4 shows an example. Machine is a substitution transition, which
is refined by the submodel shown later. The two places InputBuffer and
OutputBuffer are visible both in the upper level of hierarchy as well as in
the submodel. The submodel describes the behavior of the machine with more
detail than one transition would be capable of. In the example, the failure and
repair behavior is hidden in the lower level of hierarchy.

Model hierarchy is used in this work as a structuring method for complex
models. As such, it is rather a drawing convenience than an additional model
class capability. Hierarchy issues can thus be neglected in the formal defini-
tion below for a substantial simplification of it. Formal model coverage sees
every model as a flat colored Petri net. Such a net would result from simply
substituting every substitution transition of the net by its refining subpage,
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Fig. 6.4. Example of a substitution transition and its refining submodel

and a subsequent merge of referring places (drawn as dotted circles) with
their connected place. Objects on each page of the model must be uniquely
identifiable by their name. Model elements on nonlocal pages can be simply
identified by using a path-like notation as in a file system.

6.1.6 Syntax of Expressions

Wherever variables and constants are allowed in the inscriptions explained
earlier, expressions with operators are allowed instead as well (if not stated
otherwise). Input arc inscriptions for instance may not carry expressions with
operators. The result of an expression must of course match the required type
of a place or token color.

The current number of tokens in a place p can be specified by #p. Place
identification in expressions happens in the following way: every model el-
ement has a unique name on its page. Because of the hierarchical model
structure, it is possible to identify any place by its absolute path like
Machine/Failed in Fig. 6.4.

The values of input token attributes can be used in output arc expressions
as well as guard functions. The name of an input arc variable identifies the



108 6 Colored Petri Nets

Table 6.3. Operators and their priorities in expressions

Priority Operator Type Remark

8 (. . . ) Brackets to structure expressions
7 +, − Arithmetic Unary plus and minus

! Logic Not
6 *, /, % Arithmetic Multiplication, division
5 +, - Arithmetic Addition, Subtraction
4 <, <= , >, >= Arithmetic Comparison
3 ==, ! = All Equal, not equal
2 && Logic And
1 || Logic Or

token that is bound to the variable in a certain model state. Attributes of
structured tokens are denoted with a dot like c.product.name for a token c
of color Container.

Table 6.3 lists the available operators for arithmetic and logic expressions.

6.1.7 Performance Measures of Colored Petri Nets

For the quantitative evaluation of SCPN models, the possibility to define com-
plex reward measures (or performance measures) is necessary. Such measures
are defined by expressions containing impulse rewards and rate rewards as
explained for general SDES in Sect. 2.4. Impulse rewards may be gained in an
SCPN when a transition fires. Rate rewards describe reward that is gained
over time, like for instance amortization (constant rate) or inventory costs
(marking-dependent rate). They are, therefore, related to the contents of
places.

From the perspective of the user of the software tool TimeNET that im-
plements the SCPN model class, a performance measure has a name, an ex-
pression, a type, and a computed value if it has been analyzed already. The
type may be selected between instantaneous, cumulative, and averaged, which
corresponds to the settings of SDES reward variable elements rint� and ravg�

when the analysis time interval is set. The expression of an SCPN performance
measure contains numeric constants and operations as well as the rate and
impulse reward elements that are described later.

1. The number of tokens in a place P is measured with the term #P. This
follows the syntax in guard functions and arc expressions to simplify model
understanding. An example measure for the model in Fig. 6.3 would be
#AfterM2, resulting in the number of tokens in place AfterM2. Whether
the mean number of tokens over a time interval, the mean number in
steady-state, or the expected number at a certain point in time should be
computed is specified by the measure type and analysis time horizon.
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More complex measure examples can count the number of tokens in a
place that have some property. The number of tokens in place AfterM2
with attribute value step equaling 3 can be measured by #AfterM2(step
== 3). Measures of places are rate rewards, which is automatically set by
the tool.

2. The number of transition firings can be measured similarly. If we are
interested in the number of times that transition M2 in Fig. 6.3 fires, we
need to specify #M2 as the measure expression. Firings can be filtered
just like token numbers in places, e.g., by #M2(p.name != "bolt") to
only count firings where Product tokens bound to variable p have their
attribute name set to something other than "bolt".

Typical examples of measures and how they are specified in a Petri net have
already been shown in Sect. 5.1. The examples covered there can be applied
to colored Petri nets in a similar way. Chapter 15 contains an application
example of SCPN with some performance measures.

Expected numbers of tokens are specified as shown earlier. The throughput
of transitions is measured by transition firings and averaging over the time in-
terval of interest. Probabilities of boolean expressions over the model state can
be expressed (as explained for simple Petri nets) by a rate reward that gains
a reward of one when the expression is true, and zero otherwise. This can be
done easily because the numerical results of a true or false boolean expression
in a performance measure are defined to be one and zero, respectively.

6.2 On the Dynamic Behavior of Stochastic Colored
Petri Nets

After the informal introduction of the static model elements of a stochastic
colored Petri nets in the previous section, their dynamic behavior is informally
explained in the following. Knowledge of the behavior of simple Petri nets as
described in Sect. 5.2 is assumed, and general Petri net issues that do not
differ for colored models are not explained again.

Places contain multisets of tokens of the corresponding type – the place
marking. All place markings together establish the state of the modeled sys-
tem (ignoring the transition state for the moment, which is explained later).
Transitions can become enabled depending on the current model state and
fire, thus changing the state. The initial state of the model is specified by the
initial marking m0.

Transitions in a colored Petri nets have different ways of activation and
firing, which correspond to alternative ways of binding tokens in input places
to input arc variables. Transitions can, therefore, only be enabled and fire
under a specific binding. Saying that a transition is enabled is only a shorthand
for that at least one of its bindings is enabled.



110 6 Colored Petri Nets

IS

InBuffer

EmptyC

Transport
<c>

<c>

Product

Container

Container

<c(contents=p)>

{”b”, 1}
{”a”, 1},

{1, {””, 0}},
{2, {””, 0}}

{3, {. . . }}

[c.contents == ””
&& c.id == p.step]

<p>
Pack

Packed

Fig. 6.5. Model behavior example: bindings

The model shown in Fig. 6.5 will serve as an example. The current marking
of places is underlined. Place EmptyC stores empty container tokens, where
initially two tokens are present. One token has an id value of one, while the
other has an id of two. The product contents of the containers are empty.
All possible bindings have to be evaluated for every transition to test which
of them are enabled.

Lets start with the simple case: transition Transport has one input place
Packed, where only one token {3, {...}} is available.2 Thus, there is exactly
one possible binding of the input arc variable c to tokens: c = {3, {. . .}}. For
the moment it is not important that transition Transport has infinite server
semantics. The one found binding can now be checked if it is enabled. This
requires the guard function of the transition to evaluate to true and enough
free capacity in output places of the transition for any tokens created in them.
Both requirements are obviously fulfilled, because there is no guard function
and no output place. Transition Transport and its binding c = {3, {. . .}}
are thus enabled.

The other transition Pack has two input places InBuffer and EmptyC,
in which two tokens are stored each. The input arc variables p and c
thus may both be bound to two tokens, resulting in four different possible
bindings:

1. p = {"a", 1} and c = {1, {"", 0}}
2. p = {"b", 1} and c = {1, {"", 0}}
3. p = {"a", 1} and c = {2, {"", 0}}
4. p = {"b", 1} and c = {2, {"", 0}}

For every one of these bindings, the guard and capacity of output places
must be checked. As place Packed does not have a restricted capacity, the
latter is no issue. The guard function, however, requires that the name
of the container contents are empty (which is the case for all two con-
tainer tokens), and that the container id equals the step attribute of the

2 The dots denote omitted attributes.
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Product token p. This is only true for the first and second binding in the
shown list.

Transition Pack thus is enabled under the first and second binding. Its fir-
ing semantic is however single server, modeling that there is only one resource
which does the packing of products. Therefore, only one of the two bindings
may actually be enabled and there is no concurrency allowed. The selection of
one of the bindings is done stochastically with equal probability; we assume
that the first one (p = {"a", 1} and c = {1, {"", 0}}) is selected.

For the two enabled transition/binding pairs a remaining firing delay is
sampled from the transition delay distributions. The one with the smaller
delay fires first, while the time of the other one is decreased by the time that
has passed. Lets assume that Pack fires first. The tokens that were bound to
the input variables in the firing binding are removed from the input places
now. Output arc inscriptions are evaluated and the resulting tokens are created
in the output places. Token c = {1, {"", 0}} is taken and the Contents

attribute is set to p = {"a", 1}. The resulting token is added to place Packed.
Figure 6.6 shows the new marking. Transition Pack has fired and thus

needs to be checked again if there are enabled bindings. Because of the re-
maining tokens in InBuffer and EmptyC, there is only one possible binding,
namely p = {"b", 1} and c = {2, {"", 0}}. Pack is not enabled with this
binding because the guard function requires c.id == p.step (i.e., 2 == 1).
Transition Pack is thus not enabled at all now.

Remember that transition Transport is still enabled under binding c =
{3, {. . .}}, for which the remaining firing delay is running toward zero. Addi-
tional bindings can run concurrently because of the infinite server semantics
of Transport. Thus, the changed marking of place Packed is checked if it al-
lows for additional bindings. There is one new token {1, {"a", 1}} after the
previous transition firing, which is not yet part of an enabled binding. The
corresponding binding c = {1, {"a", 1}} is enabled because there are no
restrictions by guard function nor place capacities. Therefore, the two tran-
sition bindings Transport, c = {3, {. . .}} and Transport, c = {1, {"a",
1}} are enabled in the marking shown in Fig. 6.6, and will eventually fire.

InBuffer

EmptyC

Pack

Packed

Transport
<p>

<c>

{1, {”a”, 1}}
{3, {. . . }},

<c><c(contents=p)>

{”b”, 1}

{2, {””, 0}}

Product

Container

Container
IS[c.contents == ””

&& c.id == p.step]

Fig. 6.6. Model behavior example: second marking
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6.3 Model Class Definition

An stochastic colored Petri net (SCPN) can be formally defined as a tuple

SCPN = (P, T, T ,Cap,Pre,Post, G, Π, W, Λ,Deg,m0,RV )

with elements that are explained in the following.
P is the set of places, which may contain tokens, i.e., objects that model

some entity with the respective attributes as explained. Places correspond to
state variables of the equivalent SDES.

T denotes the set of transitions. Just as for simple Petri nets we require
places and transitions to be disjoint, and that a net should not be empty:

T ∩ P = ∅, T ∪ P �= ∅

The set of all types (or colors) that are allowed inside an SCPN is given by
T ⊂ S�, which is not defined here further. The construction of colors has been
covered in the informal introduction. We denote by Var the set of variables
over the set of types T , VarT the set of variables over an individual type
T , and by ExprVar the set of all expressions built from variables out of Var .
The set of variables contained in an expression e is denoted by Var(e), while
the individual type of a variable or expression result is denoted by C, with
∀v ∈ Var : C(v) ∈ T .

C is the color domain function that associates a color (or type) to each
place.

C : P → T
Some places have a maximum number of tokens that are allowed to be

stored in them. The capacity Cap of a place is a function that returns that
number. An unrestricted number of tokens is specified by ∞.

Cap : P → {N
+ ∪∞}

The information of input and output arc inscriptions is formally captured
in the backward and forward incidence matrices of an SCPN, Pre and Post.
Several different approaches exist to formally describe the affected tokens. The
one used here is similar to the term form, described in [139] as probably the
most general one. Arcs going from a place p to a transition t correspond to
Pre and carry a multiset of variables as inscription. The type of the variables
equals the color domain of place p, i.e., C(p).

∀p ∈ P, t ∈ T : Pre(p, t) ∈ MVarC(p)

The firing mode of a transition in a stochastic colored Petri net is repre-
sented by a mapping of values to local transition variables. These variables
are the ones that appear in the input arc inscriptions Pre. We define the
corresponding set of transition variables Var(t) of a transition t based on the
variables that are contained in the Pre expressions as
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∀t ∈ T : Var(t) =
⋃

p∈P

Var
(
Pre(p, t)

)

One possible setting of values for all transition variables is called a binding3

of t and denoted by β(t):

∀t ∈ T, v ∈ Var(t) : β(t, v) ∈ C(v)

The set of all theoretically possible bindings of a transition t is denoted by
β∗(t), which is formed by the cross-product of the sorts (i.e., sets of values)
of all individual transition variables of t:

β∗(t) = C(v1) × C(v2) × . . . × C(v|Var(t)|)
for Var(t) = {v1, v2, . . . , v|Var(t)|}

A binding β of a transition t maps the transition variables Var(t) to values
and is thus used to derive the actual value of expressions in the model (e.g.,
of the forward incidence matrix). The value of an expression ExprVar(t) under
a binding β ∈ β∗(t) is calculated by evaluating the expression after mapping
all variables to the values given by the binding. Such an expression result is
denoted by Exprβ

Var(t).
Output arcs (going from a transition t to a place p) carry as inscriptions

expressions over the transition variables.

∀p ∈ P, t ∈ T : Post(p, t) ∈ ExprVar(t)

On the basis of the bindings, it is now possible to define the result type of
the input and output arc expressions. For input arcs, a variable setting obvi-
ously leads to a multiset of tokens of the corresponding input place type. Each
output arc expression analogously returns a multiset over the color domain
of the connected place, when it is evaluated for a mapping of values to the
contained variables. We thus define

∀p ∈ P, t ∈ T, β ∈ β∗(t) : Pre(p, t)β ∈ MC(p),

Post(p, t)β ∈ MC(p)

In a certain state only selected bindings (or even none of them) might be
enabled. The guard G of a transition is a boolean function that returns True
for a binding β if it is allowed in a model state m. The guard function of a
transition is specified by an expression over the transition variables and model
state whose syntax was described earlier.

∀t ∈ T : G(t) : β∗(t) × M → B

3 Also sometimes referred to as a transition color in the literature.
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The priority of a transition t is a natural number, which is used to decide
which transition fires first if there are several scheduled to do so at the same
point in time. Higher numbers mean a higher priority.

Π : T → N

W maps each transition to a real number, the firing weight. This value is
interpreted as a relative probability of firing t in a case where there is more
than one transition with equal priority, which are scheduled to fire at the
same time. The firing weight is used to decide probabilistically which tran-
sition fires first. It is usually only applied to immediate transitions, and the
default value is 1.

W : T → R

The delay Λ of a transition describes the time that must pass while the
transition is enabled until it fires (occurs). The delay is defined by a probability
distribution function that describes the random delay time.

Λ : T → F+

The Deg specifies the degree of concurrency for each transition. Firing
modes of transitions (i.e., bindings) may be enabled concurrently to them-
selves and others of the same transition. This case is called infinite server
(IS ), while the default case with only one concurrent binding is called single
server (SS ).

Deg : T → {SS , IS}
To avoid an ambiguous semantics and complex preselections, infinite server
transitions must have exactly one input place, and only one variable inscribed
at the corresponding arc:

∀t ∈ T :
(
Deg(t) = IS

)
−→

∑

p∈P

|Pre(p, t)| = 1

A state of a stochastic colored Petri net corresponds to a specific associ-
ation of token multisets to places, and is called marking. Each marking m
is thus a vector indexed by the places, whose entries are multisets of colors.
A token is an object of a color (type).

∀p ∈ P : m(p) ∈ MC(p)

The initial marking m0 denotes the state of the Petri net model from which
the dynamic behavior shall start. Because m0 is a marking, it is also of the
form m0 : P → MT with the restriction that the tokens in each place must be
of the corresponding type. The initial marking must not violate the restriction
of the place capacities.

∀p ∈ P : |m0(p)| ≤ Cap(p)

The set of all theoretically possible markings is denoted by M .
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The performance measures or reward variables of a stochastic colored
Petri net are denoted by RV . Two basic types have been informally in-
troduced earlier, which either correspond to token numbers in a place or
to the number of times that a transition fires. The user-level specifica-
tion of a performance measure allows to arbitrarily mix these basic mea-
sures and to use them as terms in a numerical expression with operators.
This technically exceeds the formal expressiveness of SDES reward vari-
ables. Therefore, only basic reward measures of an SCPN that correspond
to places or transitions are considered in the following; it is obvious how
a tool implementation can cut a more complex expression into allowed
terms, compute them, and derive the final result by applying the original
expression.

With this restriction the definition of SCPN reward variables is done as
follows. The reward variable applies to either a place or a transition of the
model. This reward variable object is stored in robj . The second parame-
ter rexpr specifies the optional filter expression as a boolean function either
on tokens in a place or on transition bindings. If no filter expression has
been used in the reward variable specification (the default), rexpr is always
true.

∀rvar ∈ RV : rvar = (robj , rexpr)
with robj ∈ P ∪ T

and

{
rexpr : C(robj ) → B if robj ∈ P

rexpr : β∗(robj ) → B if robj ∈ T

6.4 A SDES Description of Colored Petri Nets

Remember that a stochastic discrete event system has been defined as

SDES = (SV �, A�, S�,RV �)

The specific settings of an SDES representing a CPN model are defined in the
following.

The set of state variables SV � is given by the set of Petri net places

SV � = P

and each state of the SDES is equal to a marking of the colored Petri net. The
value of a state variable in a state is given by the multiset of colors (tokens)
that is contained in the corresponding place in the marking.

The set of SDES actions A� equals the set of transitions of the Petri net.

A� = T
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The sort function of the SDES maps to the type function (color) of the
Petri net for places and variables of transitions.4

S�(x) =

{
C(x) if x ∈ P

C(x) if x ∈
⋃

t∈T Var(t)

Attributes of the SDES state variables SV � correspond to the details of
the Petri net places. Namely the condition function Cond� and initial value
Val0 � are set for SCPN models as follows. The condition function is true if
the capacity of a place is not exceeded.

∀p ∈ P : Cond�(p,m) =
(
|m(p)| ≤ Cap(p)

)

The initial value is given by the initial marking.

∀p ∈ P : Val0 �(p) = m0(p)

Because the capacities are respected in the initial marking of the Petri net by
definition, the condition functions of the SDES are not violated.

Actions A� of the SDES are given by transitions as stated above. Their
associated attributes are specified using the SCPN elements as follows.

The priority Pri� is copied from the one defined in the Petri net.

∀t ∈ T : Pri�(t) = Π(t)

The set of action variables of an action that corresponds to a transition t
is equal to the set of transition variables Var(t) of t. The sort is given by the
type in the Petri net, as it has already been specified above.

∀t ∈ T : Vars�(t) = Var(t)

As one action mode of an SDES action is equivalent to an individual setting
of the action variables, action modes correspond directly to bindings of the
SCPN. The set of all action modes Modes�(t) equals the set of all possible
bindings for a transition t.

The execution of an enabled action mode is done by firing the associated
transition t under its binding β, leading from a marking m to m′. This subse-
quent marking m′ is calculated by subtracting from m the multisets of tokens
from places given by the backward incidence matrix Pre and by adding to-
kens as specified by the expressions in the forward incidence matrix Post.
Only the part of both matrices that corresponds to the firing transition t is
used, and the expressions are evaluated under the binding β.

∀t ∈ T, ∀β ∈ β∗(t), ∀m ∈ M, ∀p ∈ P :
Exec�(t, β,m)(p) = m(p) − Pre(t, p)β + Post(t, p)β

4 More formally, only the sort of the type has to be taken in the formula. The term
type is used in the context of colored Petri nets as it is done in the literature.
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The enabling of an action mode now needs to be defined depending on the
enabling of the corresponding Petri net binding. More correctly we say that
a transition t of an SCPN is enabled under a binding β ∈ β∗(t) in a marking
m. This is the case if and only if (1) the enabling function of the transition
is true for the binding, (2) there are enough tokens in the input places of the
transition that match the values, which are bound to the variables of the input
arcs, and (3) the execution (defined below) of the transition under the binding
would not violate the capacity restrictions. Because the input arc inscriptions
are captured as expressions in Pre(·, ·), their actual value under a binding β
is denoted by Pre(·, ·)β as introduced earlier.

∀t ∈ T, β ∈ β∗(t),m ∈ M :
Ena�(t, β,m) = G(t, β,m) guard

∧ ∀p ∈ P : Pre(p, t)β ⊆ m(p) input tokens
∧ ∀p ∈ P : |Exec�(t, β,m)(p)| ≤ Cap(p) capacity

The enabling degree Deg� is either 1 for single server transitions or infinity
for infinite server transitions. For a specific binding and thus action variant,
the actual enabling degree in a state VDeg� equals the number of times that
the enabled binding could fire in the current marking for those of type infinite
server. Because of the restriction of only one input place pi with one variable
vi in the inscription of an infinite server transition t (Pre(pi, t) = {vi}), it is
not necessary to fire the transition for a derivation of the degree. The number
of tokens in pi that are mapped to vi by a binding β can be used instead. It
appears natural to interpret the enabling degree that way without checking
output place capacities after an eventual firing.5

∀t ∈ T, β ∈ β∗(t),m ∈ M :

Deg�(t) =

{
1 if Deg(t) = SS
∞ if Deg(t) = IS

VDeg�(t, β,m) =

{
1 if Deg(t) = SS
|{β(t, vi) ∈ m(pi)}| if Deg(t) = IS

The delay of an action mode equals the delay of the transition of the
corresponding binding. In an SCPN the delays of all bindings of one transition
are always the same by definition.

∀t ∈ T : Delay�(t, ·) = Λ(t)

The weight of an action mode is given by the weight of the transition that
the associated binding belongs to.

∀t ∈ T : Weight�(t, ·) = W (t)

5 β(t, vi) equals the token value that is bound to variable vi by binding β.
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The set of reward variables of the colored Petri net RV is converted into
the set of SDES reward variables as follows. Parameters rint� and ravg� specify
the interval of interest and whether the result should be averaged over rint�.
Both correspond to the type of results the modeler is interested in and the
related analysis algorithm. They are not related to the model or the reward
variable definition of the model, and thus set according to the type of analysis
and not considered here.

There is one SDES reward variable for each SCPN reward variable, such
that

RV � = RV

with the following parameter setting

∀rvar ∈ RV � :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rrate� =
∣
∣
{
x ∈ m(robj ) | rexpr(x)

}∣
∣ ,

rimp� = 0

}

if robj ∈ P

rrate� = 0,

rimp�(robj , β) =

{
1 if rexpr(robj , β)
0 otherwise

⎫
⎪⎬

⎪⎭
if robj ∈ T

This ensures that in the case of a place-related measure the rate rewards are
earned according to the number of (matching) tokens of the place, while in the
transition-related case an impulse reward of one is collected if the measured
transition fires with an accepted binding.

6.5 Variable-Free Colored Petri Nets

The modeling of complex real-life systems with uncolored Petri nets usually
leads to large models that are hard to understand and maintain. Colored
Petri nets as described before offer more advanced modeling facilities like dis-
tinguishable tokens and hierarchical modeling. The pure graphical description
method of Petri nets is, however, hampered by the need to define colors and
variables comparable to programming languages. Variable-free colored Petri
nets (short: vfSCPN) are a modeling class that may be seen between simple
and colored Petri nets. The specification of token variables and the issue of
bindings is omitted, while tokens can still be distinguished.

vfSCPNs are informally introduced in the following using a small exam-
ple. Section 6.5.2 gives a more formal definition, which is restricted to the
differences with respect to stochastic colored Petri nets. The interpretation
of vfSCPN models in terms of a stochastic discrete event system is shown in
Sect. 6.5.3. A more complex application example is covered in Chap. 16. Ref-
erences to relevant literature are given in the notes at the end of this chapter.
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6.5.1 An Example

Figure 6.7 shows a vfSCPN model of the synchronization between vehicles and
trains at a level crossing. Places and transitions beginning with a T specify
train behavior, while those with V describe vehicles. The top left part shows
the states and state transitions of the gate. It should be noted that the model
is only intended to explain vfSCPN models informally, and is no model of
guaranteed safe behavior.

Types of places and thus tokens are formally defined as for colored Petri
nets. The type of each place and an optional capacity is written besides it as
well. The default empty type is again omitted. However, as there are no vari-
ables and no operations on types that change attributes of a token allowed,
all elements of every type must be explicitly used somewhere in the model.
It would otherwise not be possible to create such a token. One may therefore
restrict to strings as color identifiers without loss of generality. Another con-
sequence is that it is technically not necessary to define the types, because all
elements (values) of types can be extracted from the model syntactically. In
our example model places Up and Down have the default empty color. Places
and arcs of that color are drawn thin to improve readability. The remaining
places contain tokens of a type Obj, which is defined as having the elements
Obj = {train, car, truck}. Places of that type are obviously used to model
locations of trains and vehicles.

Having no variables in arc inscriptions means that every arc inscription is
a constant token multiset (i.e., a multiset over the sort of the place). Examples
of that case are the input and output arcs of train-related transitions in
the figure, where the inscription is always train. An example notation of

Up Down

TLeaveTArrive
CrossingTNearTApproachTElse

Lower

VApproach

VWait

VArrive

VLeave

[#TElse == 0]

[#TElse > 0]
[#Up > 0]

<train><train><train><train><train>

<train>

Obj
ObjObj

Obj

Raise

Fig. 6.7. Notation example for variable-free colored Petri nets
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a more complex multiset constant would be <3#car + 2#truck>. Arcs may
not model behavior that is similar for different token values as in SCPN,
but allow for selectivity of token values. An example is transition TLeave,
which fires only for train tokens, although there may be vehicle tokens in
place Crossing as well. Arcs connecting uncolored places do not need an
inscription just like in a simple Petri net (c.f. the upper left part of the
example).

vfSCPN models do allow, however, some kind of flexibility in the transition
firing with the notion of transition modes despite the fixed arc inscriptions.
Such a mode describes the input and output tokens, the delay and weight of
different transition variants individually. The behavior of a transition mode
may thus be described by an uncolored transition, which allows to interprete
a vfSCPN transition as a folding of the different modes. Every mode is an ex-
plicit description of a SDES action mode in contrast to SCPN bindings, which
may be enumerated during the model evolution and for a specific marking
only.

The notation of the token value at the arc (like train) is only a visual
shorthand for a transition with only one transition mode. In the general case
there are different arc inscriptions depending on the mode, which can not
be graphically depicted easily. The general way of describing a transition is a
table containing all transition modes and their attributes. Table 6.4 shows this
table for the transitions in the example that have more than one transition
mode.

The table lists the input and output behavior; the places are clear for the
example and thus not mentioned. In the general case the token multisets must
be specified together with the corresponding input or output place to avoid
ambiguities. The interarrival time between two consecutive cars is assumed to
be exponentially distributed with a mean of 2 time units (20 for trucks). The
time to drive over the crossing is set as 1 and 2 time units. The delay must be
consistent with the transition type, i.e., in a timed transition all delays must
be greater than zero with probability one and vice versa.

Table 6.4. Transition mode details of the level-crossing example

Transition Mode Input Output Delay Firing
number token token weight

VApproach 1 – car Exp(2) 1
2 – truck Exp(20) 1

VArrive 1 car car 0 1
2 truck truck 0 1

VLeave 1 car – 1 1
2 truck – 2 1
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Firing weights may be used to define firing probabilities mainly for immedi-
ate transitions, but this was not necessary in the example. Marking-dependent
guard functions are available to disable transitions based on the model state.
The syntax of expressions is the same as for SCPN. In the example, vehicles
may only enter the crossing itself if the gate is up ([#Up>0]), and the gate is
raised if the train is neither near nor on the crossing. Hierarchical refinement
of substitution transitions is possible just as for SCPN models.

The syntax and meaning of performance measures is the same as for
stochastic colored Petri nets. However, filter expressions are only available for
places, and just specify a token value without an attribute. Examples would be
the number of train crossings #TLeave and the probability of a forbidden state
(#Crossing(train)>0) && (#Crossing(car)+#Crossing(truck)>0).

The dynamic behavior that is described by a vfSCPN model is defined in
a very similar way to that of SCPN. The main difference is that bindings of
variables do not have to be computed, because all action modes are already
explicitly described by the transition modes.

6.5.2 Model Class Definition

A stochastic variable-free colored Petri net (vfSCPN) is similar to a SCPN
and defined as follows:

vfSCPN = (P, T, C,Cap,Pre,Post, G, Π, W, Λ,Deg,m0)

The elements of this definition are detailed below. However, explanations and
definitions are only given if they differ from the corresponding SCPN defini-
tions in Sect. 6.3.

P and T denote the transitions and places. The capacity Cap of places,
the transition priorities Π , server semantic Deg as well as the guard function
G6 are defined as for SCPN. However, no variables are defined as it is done
with Var for colored Petri nets. The guard function is formally defined as for
SCPN due to the similarity between transition modes and bindings. It should
be noted that the guard represents a marking-dependent boolean function for
each transition mode in the vfSCPN context. C associates a color (type) to
each place.

States (markings) are defined just like for SCPN. A marking m thus asso-
ciates a multiset of tokens of the matching sort to every place. The definitions
and explanations of the initial marking m0 and the set of all theoretically
possible markings M are thus also equivalent for vfSCPN.

The firing modes of a transition in a stochastic variable-free colored Petri
net are directly given by the set of firing possibilities7. Most of the other

6 In the original definition on which this section is based [354, 361], there is a
distinction between a global guard of the whole transition and local guards defined
per mode. This is omitted here for simplification.

7 Termed transition table in [361].
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transition properties depend on the mode as explained below. There are no
transition variables beside the selection of a certain firing mode. Every mode
is thus equivalent to an explicit SCPN binding specification, and the set of all
of them corresponds to the set of all theoretically possible bindings of a SCPN
transition. In the vfSCPN setting we thus use the bindings symbol β∗(t) for
the set of firing modes of a transition t. We do not define the element sort of
β∗(·)8, but use the elements as parameters for the firing mode properties. All
mode sets are however required to be finite.

∃k ∈ N : ∀t ∈ T, |β∗(t)| < k

Backward and forward incidence matrix elements need to be defined de-
pending on the transition mode, as any one of them may remove and add
different tokens. Every arc corresponds to a multiset over the color domain of
the connected place for a specific transition mode. Thus

∀p ∈ P, t ∈ T : Pre(p, t) : β∗(t) → MC(p)

∧ Post(p, t) : β∗(t) → MC(p)

The delay Λ of a vfSCPN transition may depend on the transition mode as
well. To simplify understanding, timed and immediate transitions must only
possess corresponding delays in their respective mode specifications. In any
case the delay is defined as a distribution function like for SCPN.

∀t ∈ T, Λ : β∗(t) → F+

Firing weights are also be defined depending on the transition mode, while
the default value is one.

∀t ∈ T, Λ : β∗(t) → R
+

Reward variables are formally defined exactly like for colored Petri nets.
The only difference is in the (simpler) syntax, which has been explained in the
informal introduction above. Transition throughput may only be measured for
complete transitions, i.e., without filter expressions.

6.5.3 Representing vfSCPNs as SDES

Due to the similarity in the model definitions of SCPN and vfSCPN, their
transformation into a SDES model only differs in a few details which are
covered below without the repetition of unchanged definitions.

The SDES representation is identical to the one given for SCPN in Sect. 6.4
namely for the set of state variables SV �, the SDES states and actions, action
priorities, guards and enabling degrees as well as the set of all sorts in the

8 It just needs to be a set of identifiers like an enumeration type.
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model and the reward variables. The same applies to the condition function
(for place capacities) and initial value (for the initial marking).

The set of action variables of a SDES action that corresponds to a vfSCPN
transition t contains exactly one element denoted by mv t. It identifies the
different explicitly defined transition modes.

∀t ∈ T : Vars�(t) = {mv t}

The SDES sort function equals the sort of the place type for places and the
transition mode set for the action variables mv t (compare the corresponding
notes for SCPNs).

S�(x) =

{
C(x) if x ∈ P

β∗(t) if x ∈ Vars�(t)

One vfSCPN transition mode is equivalent to a SDES action mode just like
bindings are for colored Petri nets. The set of all action modes thus equals
the set of transition modes Modes�(t) = β∗(t).

Enabling of transition modes and the corresponding SDES action modes
are exactly defined as for SCPN, if the term Pre(p, t)β is understood as the
similar Pre(p, t)(β) in the vfSCPN setting. The execution of transition modes
is also identically defined under the mentioned understanding of Pre.

The delay of an action mode and the weights are just copied from the
transition attributes. This differs from the colored Petri net definitions where
these properties are defined per transition and not per mode.

∀t ∈ T, β ∈ β∗(T ) : Delay�(t, β) = Λ(t, β)
∧ Weight�(t, β) = W (t, β)

Notes

There is a large quantity of literature available on Petri nets with individual
tokens. Different variants have evolved, namely colored Petri nets [187, 188],
algebraic high-level nets [90, 315], and Predicate/Transition nets [120–122].
An overview of the theory and some applications is given in [186]. Theoretical
background and qualitative properties of some simple and colored Petri net
types are covered in [139].

Extensions of colored Petri nets by stochastic firing times have been in-
troduced in [222, 223, 335]. A proper structuring of the color set leads to the
definition of stochastic well-formed nets [11,55], for which the numerical anal-
ysis can be carried out more efficiently [41]. Applications are e.g., reported
in [13, 215].

Chapters 15 and 16 give some pointers to application-oriented references
using colored Petri nets. The kind of stochastic colored Petri nets presented
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throughout the chapter was developed within an industrial project [331,363].
Its creation was mainly influenced by colored Petri nets (CPNs) as defined
in [188]. The main differences are easier specification of arc inscriptions, al-
lowing an automated generation of efficient analysis algorithm code, and a
true stochastic timing semantics, which is in accordance to the usual under-
standing of timed Petri nets. Type definitions are simplified, and arc variables
do not need to be declared as they have to be in CPNs using the specification
language Standard ML.

Remarks on vfSCPN-related work and publications on which the descrip-
tion is based can be found in the Notes of Chap. 6.5 in p. 339. The net class
arc-constant colored Petri nets defined in [139] is similar to vfSCPN models if
we restrict to only one transition mode.
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Standard Quantitative Evaluation Methods
for SDES

Different modeling formalisms and their translation into a general SDES model
have been covered in the previous chapters. One of the main reasons for con-
structing an SDES model is the prediction of properties of the modeled system.
This chapter describes a selection of well-known analysis methods that derive
quantitative measures from the model, and which can thus be used for a
performance and dependability evaluation of a planned system. The starting
point is always the dynamic behavior of a model over time, which is given by
the stochastic process described by the model as shown in Sect. 2.3.2, and the
derivation of the reward measures of interest.

Examples of measures include performance (often in terms of through-
put), dependability issues, and combinations of them. They are expressed by
reward variables in an SDES model as it has been described in Sect. 2.4.1. The
applications described in Part III include different examples. A model-based
experiment requires a model, performance measures, and their type (e.g., tran-
sient or steady-state). The selection of an evaluation algorithm depends on
the type of reward variable as well as the mathematical complexity of the
solution, because preferable algorithms might exist for models with certain
restrictions.

For simple model classes, it is possible to directly derive mathematical
expressions from a specific model, which can then be solved symbolically to
compute the values of the measures. This is, however, only possible for very
restricted models, and is often hard to implement as an algorithm for a variety
of models. This technique is outside the scope of this text, because we are
interested in analysis methods that are applicable to certain classes of SDES
models in general.

Numerical analysis techniques are based on mathematical formulations
of the model dynamics. The stochastic process of a model is, for instance,
described by matrix equations or (partial) differential equations. Reward mea-
sures can be derived in closed form for special cases, or by numerical algo-
rithms with fewer restrictions. The reachability graph of all possible states
and state transitions is the basis for these methods. Numerical techniques
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such as iterative computations, vector and matrix operations, and numerical
integration are examples of the used numeric algorithms. The applicability of
this class of techniques depends on the complexity of the stochastic process
in terms of the state space size and the combinations of delay distributions.

Delays of action variants may be exponentially distributed or zero, lead-
ing to a continuous-time Markov chain (CTMC) as the underlying stochastic
process. Those Markovian SDES are often used due to the relatively simple
analysis. However, the assumption of a memoryless delay distribution is not
realistic in many cases and can lead to significant differences for the computed
measures. Action variants with deterministic or more generally distributed de-
lays are needed for the modeling of systems with clocking or fixed operation
times. Many technical systems of great interest from the fields of communica-
tion, manufacturing, and computing belong to this class.

If the restriction of only exponentially distributed and immediate delays is
relaxed, the numerical analysis becomes much more complex. The stochastic
process is not memoryless any more in states with an executable action variant
with nonexponential delay. Examples of non-Markovian SDES are given in
the final notes of Chap. 5. If, in every reachable state of an SDES model,
there is not more than one executable action with a delay that is not zero or
exponentially distributed, numerical analysis algorithms have been presented
in the literature, which are adopted here.

If the mentioned restriction of delay distributions is violated or the direct
numerical analysis is too complex to be handled, discrete event simulation
can be used to estimate the values of the measures. Large state spaces and non-
Markovian models are not a problem for such an algorithm, but a sufficient
accuracy of the results and rare events may cause long run times.

Simulation of an SDES model in the sense used throughout this text is
always possible. The simulation algorithms implement the dynamic behav-
ior of a system in a way very similar to the stochastic process described in
Sect. 2.3. Just like the Latin root of the word simulare (to make like, imitate)
says, the system behavior is mimicked in the computer model. In doing so,
the algorithm follows one of the many possible evolutions of the stochastic
process, the state trajectories, or sample paths of the SDES.

Specification and theoretical derivation of performance measures for SDES
models have been defined in Sect. 2.4. The reward variable description con-
tained in the model specification includes – besides the most important rate
and impulse rewards – the type of the variable derivation. Namely the ob-
servation interval rint� = [lo, hi ] and if the result should be averaged over
time or not in ravg� are given. Unfortunately no single evaluation algorithm
can be used to compute all possible performance measure variants. Table 7.1
shows which one of the available methods is applied for each case of mea-
sure. We differentiate between the cases of performance measures given in
Sect. 2.4.1.

The selection of the algorithms presented below is guided by the inte-
gration of different model classes into the SDES generalization. Standard
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Table 7.1. Types of performance measures and evaluation methods

Type of variable [lo, hi ] ravg� Appropriate algorithms

Instant-of-time [t, t] False TransientSimulation, p. 142
or transient analysis, p. 148

Interval-of-time [0, t] · TransientSimulation, p. 142
or transient analysis, p. 148

Steady-state [0,∞] True SteadyStSimulation, p. 140
or steady-state analysis, p. 149

Alt. steady-state [∞,∞] True Is mapped to standard steady-state

algorithms known from the literature for subclasses are given in the generalized
SDES setting. Due to the mapping of the different model classes to an SDES,
every algorithm can be used to evaluate a model of any of the specific classes.
The algorithms thus only use the definitions of SDES models as described in
Chap. 2. Additional algorithms are necessary to completely derive the reward
measure values; they are, however, only briefly mentioned if they do not differ
from the standard application using results of the SDES-specific algorithms.

The advantage of unified algorithms for different model classes, however,
has a downside. There are well-known analysis methods for specific classes
that are not applicable for the general SDES case. In comparison to the SDES
algorithms they are, however, often more efficient or even do not exist other-
wise. Product-form solutions for classes of queuing networks, which compute
performance measures without the need to analyze the whole state space, are
an example. Standard model class-specific algorithms are not the focus of this
text; the reader is referred to the standard literature about the model classes
and their analysis algorithms for further information.

Some prerequisites for the later description of algorithms are covered in the
subsequent section. Simulation algorithms for the transient and steady-state
simulation (namely TransientSimulation and SteadyStSimulation) are
presented in Sect. 7.2. Some common functions are presented in Sect. 7.2.1,
including a description of the syntax for algorithms used throughout this text.

Numerical analysis algorithms as opposed to simulation are covered in the
subsequent Sect. 7.3. For any method therein, the first step is the generation
of the reachability graph. The corresponding algorithm GenerateFullRG

is covered in Sect. 7.3.1. Depending on whether the underlying stochastic pro-
cess of the SDES model is a Markov chain or not, the appropriate numerical
evaluation algorithm can be selected from the ones described in Sects. 7.3.2
and 7.3.3. Notes on background material and publications used for this sec-
tion are given at the end of the chapter. Additional evaluation algorithms are
presented in the subsequent chapters of this part. Application examples for
the different methods can be found in Chaps. 13–16.
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7.1 Prerequisites

This section describes terms and notation for the quantitative evaluation
of stochastic discrete event systems used in the following. They build upon
the terms introduced in Sect. 2.3 for the dynamic behavior of SDES models.
It should be noted that we restrict ourself in the following to the “incomplete”
states of the SDES model without action states. Recall that such a state σ ∈ Σ
associates a value to each state variable sv ∈ SV �, and is the same as consid-
ered by the simplified process SProc. The prerequisites of an action a together
with one of its modes mode for being enabled have been explained in the
section mentioned above:

– The initial state of an SDES model is the starting point of any evaluation
and denoted by σ0. The values of all state variables in the initial state are
specified by Val0 �.

σ0 ∈ Σ such that ∀sv ∈ SV � : σ0(sv ) = Val0 �(sv)

– An action variant v is said to be executable in a state σ if its action
mode is enabled in it and there are no other enabled action modes with
immediate delay (with a higher priority, if v is also immediate). The set
of executable variants in a state σ is thus defined as

Executable(σ) = {v = (a,mode) ∈ AV | mode ∈ Enabled(a, σ) ∧
Delay�(v) ∈ F im −→

(
∀ai ∈ A� : Delay�(ai, ·) /∈ F im

∨Pri�(ai) ≤ Pri�(a)
∨Enabled(ai, σ) = ∅

)

Delay�(v) /∈ F im −→
(
∀ai ∈ A� : Delay�(ai, ·) /∈ F im

∨Enabled(a, σ) = ∅
)

}

– A state σ′ is said to be directly reachable from another state σ (σ′, σ ∈ Σ),
if there is an action variant v = (a,mode) ∈ AV executable in state σ,
which causes the state to be changed to σ′ by its execution. We write

σ v−→σ′ iff v ∈ Executable(σ)
∧ ∀sv ∈ SV � : σ′(sv ) = Exec�

(
a,mode, σ(sv )

)

– A state σn is said to be reachable from another state σ1, if there exists
a sequence of states σ1, σ2, . . . , σn that are directly reachable from the
previous one each by executing arbitrary action variants. We denote this by

σ1 −→σn iff ∃σ2, . . . , σn−1 ∈ Σ, ∃v1, . . . , vn−1 ∈ AV
such that ∀i ∈ {1, . . . , n − 1} : σi

vi−→σi+1

If the executed set of action variants V that lead from σ to σ′ matters, we
can also write σ V−→σ′. The simplest case is of course an empty sequence
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V = ∅, and we consequently say that a state σ is reachable from itself with
an empty sequence σ ∅−→σ.

– The reachability set RS of an SDES is the set of all states that are reach-
able from its initial state σ0.

RS = {σ ∈ Σ | σ0 −→σ}

States in which at least one activity with a zero delay (i.e., immediate) is
enabled are called vanishing, because no time is spent in the state. The
remaining ones are called tangible. Elements of the reachability set RS
are thus divided into tangible states RS tan and vanishing states RSvanas
follows.

RS van = {σ ∈ RS | ∃v ∈ Executable(σ) : Delay�(v) ∈ F im}
RS tan = RS \ RSvan

– The graph that has all reachable states RS as vertices and state changes
due to activity executions as edges RE is called the reachability graph
and denoted by RG. It is a directed weighted graph. Edges of the graph
correspond to state transitions, which map pairs of source and destination
states to the executed action and action mode. The set of all edges is
denoted by RE .

RG = (RS ,RE )
RE ⊆ RS × RS × AV

with ∀(σ, σ′, v) ∈ RE : σ v−→σ′

– The reachability graph can be transformed into the reduced reachability
graph RRG, where all states in which zero time is spent (vanishing) and
all state transitions with an immediate delay are removed. The remaining
graph has to be changed to capture the same dynamic behavior. The re-
moved immediate state transitions are stored together with the previous
timed state transitions such that edges of the reduced reachability graph
describe one timed action variant together with any number of subsequent
immediate ones.
Let AV im = {v | Delay�v ∈ F im}, AV exp = {v | Delay�v ∈ Fexp},
and AV gen = {v | Delay�v ∈ Fgen} denote the set of all action vari-
ants with immediate, exponentially, and more generally distributed delays,
respectively.

RRG = (RRS ,RRE ) with
RRS = RS tan and
RRE ⊆ RRS × RRS × AV × 2AV

with ∀
(
σ, σ′, v0, {v1, v2, . . . , vn}

)
∈ RRE :

(σ, σ′
0, v0) ∈ RE ∧
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(σ′
0, σ

′
1, v1) ∈ RE ∧ . . . ∧ (σ′

n−1, σ
′, vn) ∈ RE ∧

v0 /∈ AV im ∧ {v1, v2, . . . , vn} ⊆ AV im

All paths of immediate action variant executions from a state after a
timed state change must be followed until the next tangible state has
been reached. The edge set RRE of the reduced reachability graph is thus
constructed as (V may be an empty sequence, in which case σ′ = σ′′)

∀(σ, σ′, v) ∈ RE , v /∈ AV im , V ⊆ AV im , σ′′ ∈ RRS :

(σ, σ′′, v , V ) ∈ RRE iff σ′ V−→σ′′

– The probability of an immediate state transition from a vanishing state
σ ∈ RS van to a directly reachable state σ′ ∈ RS by executing v is denoted
by P{σ v−→σ′} and can be derived from the weights of the enabled action
variants.

∀σ ∈ RSvan , σ′ ∈ RS with σ v−→σ′ :

P{σ v−→σ′} =
Weight�(v)

∑
vi∈Executable(σ) Weight�(vi)

– The path probability P{σ−→σ′} denotes the overall probability of fol-
lowing any (possibly empty) path consisting of immediate state transitions
that lead from a vanishing state σ to a state σ′. It is computed from the
sum of all possible single path probabilities, for which the probability is
the product over all immediate state transition probabilities.1

∀σ1 . . . σn−1 ∈ RSvan , σn ∈ RS : (7.1)

P{σ−→σ′} =
∑

V ={v1,v2,...,vn−1}⊆AV im

σ1
v1−→σ2

v2−→ ...
vn−1−→ σn

n−1∏

i=1

P{σi
vi−→σi+1}

Path probabilities and the underlying probabilities of immediate state tran-
sitions are related to the resolution of conflicts between action variants with
zero delay. Action variants of this type are often used to model decisions that
depend on the current state or the distribution and further paths of cus-
tomers, parts or tokens. From the point of view of an analysis algorithm or
a software tool, the definition of the dynamic behavior of an SDES model as
given in Sect. 2.3 is sufficient, because it completely defines how such conflicts
are resolved. Actions with higher priorities Pri�(·) are preferred. If there are
several executable action variants with the same priority (and zero delay), a
probabilistic decision is made depending on the weights Weight�(·).

1 We require that the reachability graph does not contain circular state transition
paths containing only immediate actions. These vanishing loops can be resolved
numerically [66], but induce infinitely many entries in the sum of (7.1).
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There are models in which the specification of weights and priorities leads
to situations in which the further behavior of the model depends on the de-
cision of which immediate action variant is executed. This decision, however,
cannot be based on timing properties, because there is no first action variant
if all have a zero delay. If different sequences of immediate executions lead
to differing outcomes, a confusion has been encountered, and causal proper-
ties of the model might not be handled in a way that the modeler intended.
The correct specification of priorities and weights may be a problem for a mod-
eler, because he or she works on the structural level of the model and should
not be concerned about all possible paths of states and state transitions.

Different methods have been proposed in the literature to avoid this prob-
lem. We do not go into the details of this issue; the mentioned methods could,
however, be applied to SDES models as well. Extended conflict sets (ECS) of
transitions are derived in [53] for generalized stochastic Petri nets. Such a set
contains all transitions that may be in conflict during the model evolution.
Weights are then regarded as relative probabilities between transitions in each
ECS. Structural checks are available that ensure the independence of transi-
tion firing order between different ECS. This approach is, e.g., implemented in
GreatSPN [51] and TimeNET [359]. The Möbius software tool implements a
state space-based well-defined check that detects confusions [81, 82]. The last
reference gives a good overview about the different approaches to confusions
and their historical development. Confusions occur especially often in models
which are interpreted in discrete time, such as discrete-time deterministic and
stochastic Petri nets [337, 338]. Conditions for stochastic Petri net model to
be well defined have been given in [70] based on an analysis of the stochastic
process. One of the most recent discussions is given in [303].

7.2 Next-Event Time Advance Simulation

A simulation algorithm for a discrete event system computes sequences of
states and state transitions. Section 2.3.2 defined the stochastic process of an
SDES model formally. The same steps are carried out in an implementation:
determine the activity to be executed, change the state according to the ex-
ecution, and update the model time. The event execution is atomic and does
not take time in an SDES model. States and thus accumulated rewards are
constant between subsequent events and hence do not need to be simulated
in more detail. The simulation time may instead jump from one event time
to the next, which resulted in the name next-event time advance.

For a correct implementation of the formal definition, the complete state
must be captured, i.e., action states together with the state variable values.
While the action states are just a set of tuples from the theoretical standpoint,
a reasonable implementation will use a more efficiently manageable data struc-
ture. The set of activities is stored in an event list, an ordered list with all
currently scheduled events and their planned execution times. The event list



134 7 Standard Quantitative Evaluation Methods for SDES

is the algorithmic equivalence of the action state as of the complete stochastic
process, and it is ordered such that entries with smaller scheduled times come
first. The activity to be executed next will then always be the first entry in
the list (or at least one of the first, if there are several scheduled for the same
time).

Another difference between implementation and definition is that times
in the event list are absolute simulation times rather than remaining activity
delays as used in the formal definition of the stochastic process. If relative
times would be stored, the sojourn time spent in a state would have to be
subtracted from all activities after a state change. Whenever a new action
variant becomes enabled in a new state, a corresponding activity is stored in
the event list after the scheduled time is set to the current time plus a random
value drawn from the action’s delay distribution. The general approach to a
simulation using an ordered event list is called event-scheduling scheme.

Other simulation principles include the process-oriented scheme, where in-
dividual entities are treated with individual processes. Such a process may,
e.g., include creation, waiting for resources, service and departure from the
model. States and events are then viewed from the side of the process, and
process-individual functions implement actions and delays. The advantage of
the event-scheduling technique lies in its generic applicability to a variety
of systems, and its clear separation between static and dynamic model ele-
ments as well as a model-independent simulation engine. The process-oriented
scheme can be used in an object-oriented program that models the real sys-
tem. A class then corresponds to an object type, and instantiated objects
model individual entities. Attributes and behavior of entities are naturally
implemented as member variables and methods. The process view can be
mapped naturally to a distributed simulation using multiple processing units
(cf. Sect. 9.1).

In difference to the next-event time advance simulation scheme, another
possibility is a time-driven algorithm. The time line is discretized at multiples
of a constant amount of time Δt. In each step of the simulation, time is
advanced to the next t + Δt, and the events that have occurred in between
are executed. There is obviously an approximation error due to the rounding
of all event times to multiples of Δt, and it might become complex to check
which events have to be executed. This algorithm type is especially useful in
the simulation of systems with continuous or hybrid state variable sets, but
may become inefficient depending on the level of activity in the model. The
choice of a Δt value controls the tradeoff between approximation error and
algorithmic efficiency.

The simulation as well as every real system is always in one individual
state. There are, however, many nondeterministic issues involved in events,
e.g., when a decision between conflicting activities has to be made or when
an actual delay for an activity is selected. This is where randomness comes
into play, which may come from noise or system details that are below the
level of model abstraction. Random number generators are thus an important
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element of a simulation algorithm, and their quality significantly influences
the simulation. The notes at the end of this chapter point at simulation books
with background information on this topic. The same applies to the following
brief coverage of simulation issues.

A simulation is a stochastic experiment, and there is no guarantee that
the result will be exact. Under certain weak assumptions, however, the result
quality becomes better if more events are simulated or a longer simulation
time is observed. There is always a tradeoff between computational effort and
result quality. One of the major questions of a simulation experiment is thus
when to stop the simulation run. The easiest way is to set a maximum simu-
lation run time or computation time. While this may be useful for testing a
model, it is not sufficient for a performance evaluation because the accuracy
of the results remains unknown. The statistical confidence in the results can
be quantified by statistical tests, e.g., Student’s t-test. It is, however, prefer-
able to continuously compute the result accuracy during the simulation and
to apply a stop condition that depends on the achieved quality. Performance
measures considered here are point estimations for mean values. Their accu-
racy can be approximately computed using a confidence interval for a given
error probability.

Another problem is that standard estimation techniques are based on the
assumption of independent events. This is obviously not the case for a usual
simulation, because subsequent events may be causally connected and thus
correlated. Covariance is a measure of such a correlation. Standard methods
for steady-state simulations thus accumulate several events to batches, from
which the mean is taken. The covariance in such a derived stream of events is
smaller, and allows for a better statistical confidence in the estimated results.
Independent replications of a simulation, each with a copy of the model and
using different streams of random numbers, also lead to an improvement of
estimation quality. This technique is obviously well suited for parallel simula-
tion. Collection of different event streams from the individual and unrelated
simulations substantially decrease the problematic covariance between indi-
vidual events.

An additional important improvement of result accuracy detects the
warmup phase (initial transient) of a steady-state simulation run, e.g., by
detecting that the temporary mean value crosses the current value a prede-
fined number of times. The initial transient phase is then ignored for the
estimation of the performance measures, which leads to better estimations.

7.2.1 Common Functions

This section introduces some functions that are used later on in the algorithms.
All algorithms in this text follow the same pseudocode-like syntax. Key-

words are set in a bold sans serif font like while. Line indentation visual-
izes code blocks that belong together like in a repeat .. until-loop to avoid
explicit end statements. Some simplifications for operations as known from
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EnabledModes (Action, State)

Output: The set of enabled modes for an action in a state

ModeSet := ∅
for ∀Mode ∈ Modes�(Action) do

if not Ena�(Action, Mode, State) then continue
Allowed := True
for ∀sv ∈ SV � do

if not Cond�
(
sv ,Exec�(Action, Mode, State)

)
then

Allowed := False
exit

if Allowed then ModeSet := ModeSet ∪ {Mode}
return ModeSet

Algorithm 7.1: Compute enabled action modes in a state

C-style programming languages are used (e.g., i++). Algorithm names are set
in the text as Algorithm. Variables and parameters use a normal font (like
Action), while the same symbols as introduced in Chap. 2 denote the elements
of the SDES definitions, for example Modes�(Action).

Algorithm 7.1 contains the function EnabledModes, which computes
and returns the enabled action modes for a given action in a state. Action
and state are input parameters, while the results are returned as a set of
action modes {mode1,mode2, . . .}. The algorithm simply scans all modes of
the action and checks their enabling function. If it is valid for the state, all
state variables are checked if the execution of the action mode would lead to
a forbidden state. If that is not the case, the mode is added to the list that is
returned later on. The function thus implements the definition of Enabled(a, σ)
at page 28.

It should be noted that not every enabled action mode that the function
returns may actually be executed in a state, because the enabling degree of
the action in the state may forbid that. Moreover, if there are actions with a
higher priority enabled, they might be executed first, thus never allowing the
actual execution of another enabled action mode. These issues are considered
in the algorithms that use EnabledModes. In the context of stochastic Petri
nets, a distinction between being enabled and having concession is made in
the literature. In that sense, EnabledModes returns the action modes that
have concession, i.e., which are structurally enabled by the model state. The
definition of executable action variants Executable in a state (see Sect. 7.1)
does indeed only return the variants that may actually be executed.

The asymptotic complexity of the algorithm depends on the number of
action modes and state variables O(|Modes�(a)| |SV �|).

Procedure UpdateActivityList shown in Algorithm 7.2 changes the
event list accordingly when a new state has been reached after an activity
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UpdateActivityList (State, ActivityList, Time)

for ∀Action ∈ A� do
Enabled = EnabledModes(Action, State)
ActivityCount[∀mode ∈ Enabled] := 0

(∗ remove all nonenabled activities from list ∗)
for ∀(Action,mode, t) ∈ ActivityList do

if mode /∈ Enabled then
remove (Action,mode, t) from ActivityList

else ActivityCount[mode]++

for ∀mode ∈ Enabled do
(∗ remove activities if there are too many ∗)
while ActivityCount[mode] > VDeg�(a,mode, State) do

Select = �Random[0..1] ∗ ActivityCount[mode] − 1	
(a,mode ′, t) = first entry in ActivityList
while Select > 0 do

if a = Action ∧ mode = mode ′ then Select−−
(a,mode ′, t) = next entry in ActivityList

remove (a,mode ′, t) from ActivityList
ActivityCount[mode]−−

(∗ add activities if the enabling degree is not reached ∗)
while ActivityCount[mode] < VDeg�(a,mode, State) do

Select := �Random[0..1] ∗ |Enabled|	
mode ′ := Enabled[Select]
t′ := Time + random value drawn from Delay�(Action)
(a, ·, t) := first entry in ActivityList
while t′ > t ∧ (t′ = t ∨ Pri�(Action) < Pri�(a)

)
do

(a, ·, t) := next entry in ActivityList
Insert (Action,mode ′, t′) into ActivityList before entry
ActivityCount[mode ]++

Algorithm 7.2: Update the event list

execution. It is used by the transient and steady-state simulation below.
The procedure takes as input the current model state, the previous event list
(ActivityList), and the current simulation time. As a result of the procedure
execution, the entries in the event list are updated according to the provided
state and time. This implementation is similar to the iterative definition of
the action states for the stochastic process in Sect. 2.3.2.

In a big surrounding loop, all actions of the SDES model are considered.
The set of enabled modes for it is derived with a call to EnabledModes

first. In a second step, all activities are removed from the event list for which
the action mode is no longer enabled. The number of activities for every
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mode mode of the current action is counted in ActivityCount[mode] on the
way. The subsequent for-loop adjusts the number of ongoing activities of the
action to the enabling degrees in the current state. If there are too many of
them present, the exceeding amount is removed after a probabilistic selection.
If the enabling degree of an action variant is not yet fully utilized, the missing
number of activities is created.

The selection of an action mode for which a new activity is added to the
event list is done based on a probabilistic choice with equal probabilities.
The time of scheduled execution is computed as the current simulation time
plus a random value drawn from the delay distribution of the action.

The asymptotic computational complexity of UpdateActivityList is
O(|A�| |ActionList|max(Modes�(a),Deg�(a), |ActionList|)). It can be substan-
tially reduced in practice if causal relationships between actions of the SDES
model can be derived from the model. The set of actions that can be disabled
and enabled (or simply affected) by one action can be computed prior to an
evaluation for some model classes. If then for instance an action ai is executed
in a state, the update of the event list can be restricted to check those actions
that might be affected by ai’s execution. Because of the locality of usual SDES
models, the number of affected actions does not necessarily increase with the
model size. In that case, a much smaller number of actions need to be checked.

With the event list updated by UpdateActivityList, the next task is
to select which activity will be executed. This may involve several steps al-
though the activities in the event list are already ordered by completion time
and priorities. Function SelectActivity as shown in Algorithm 7.3 imple-
ments this for a given event list ActivityList. It returns the selected activity
consisting of action, mode, and completion time or a tuple with the time set
to infinity if the list is empty. The selected activity is removed from the event
list as a side effect.

The activity with the highest priority among the ones scheduled for ex-
ecution at the smallest time is the first entry in the event list. The weights
of all activities with the same completion time and equal priority are added
after some initializations. The second step selects one of the found activities
based on a probabilistic choice. The relative probability for being selected is
derived from the weight divided by the sum of all weights for the mentioned
activity set. The selected activity is removed from the event list and finally
returned.

The algorithm has an asymptotic complexity of O(|ActivityList|).

7.2.2 Estimation of Steady-State Measures

For the estimation of SDES performance measures in steady-state, proce-
dure SteadyStSimulation (Algorithm 7.4) can be applied. It takes as in-
put the SDES model including its performance measures rvar�

i ∈ RV �. For
each of them, an estimated value Resultrvar�

i
is derived. We are interested

in the long-term behavior of the system, and to reach the steady-state the
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SelectActivity (ActivityList)

Input: ActivityList - the sorted event list
Output: An activity (a,mode, t) that should be executed first

(∗ if the list is empty, there is no executable activity ∗)
if |ActivityList| = 0 then return (·, ·,∞)

(a,mode, t) := first entry in ActivityList
Time := t
MaxPriority := Pri�(a)
WeightSum := 0
(∗ get the sum of weights for all possible activities ∗)
while t = Time ∧ MaxPriority = Pri�(a) do

WeightSum += Weight�(a)
(a,mode, t) := next entry in ActivityList

(∗ probabilistic selection of an activity ∗)
Select := Random[0..1]
(a,mode, t) := first entry in ActivityList

while Select −= Weight�(a)
WeightSum

> 0 do
(a,mode, t) := next entry in ActivityList

(∗ delete and return selected activity ∗)
remove (a,mode, t) from ActivityList
return (a,mode, t)

Algorithm 7.3: Select the activity to be executed next

simulation would be preferably observed until an infinite simulation time.
Such simulations are called nonterminating, but are obviously restricted by
the computational effort that is acceptable for the task.

The main simulation loop follows the formal definition of the stochastic
process CProc closely (cf. Sect. 2.3.2). The state of the state variables σ is kept
in variable State, while the activity state is held in the event list ActivityList.
The simulation time SimTime corresponds to the continuous-time t that is
used for the simplified process. The complete process was defined as a discrete-
indexed process for simplicity.

Starting from the initial state, for every new state the corresponding event
list is updated with a call to UpdateActivityList. Function SelectActiv-

ity is subsequently called to decide which one of the possible activities will
be executed. In the case that a dead state has been reached, i.e., the event list
is empty because there are no enabled actions, the returned execution time t
is infinity. In such a case, it is required to set a maximum value for the sim-
ulation time MaxSimTime, which may also serve as a stop condition for the
overall simulation. The stochastic process spends the rest of the time in the
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SteadyStSimulation (SDES)

Input: SDES model with performance measure definitions
Output: estimated values of performance measures rvar�

i ∈ RV �

(∗ initializations ∗)
for ∀sv i ∈ SV � do State(sv i) := Val0

�(sv i)
ActivityList := ∅
SimTime := 0
for ∀ rvar�

i ∈ RV � do Rewardrvar�
i

:= 0

(∗ main simulation loop ∗)
repeat

(∗ get new activities ∗)
UpdateActivityList(State, ActivityList, SimTime)

(∗ select executed activity and prepare variables ∗)
(a,mode, t) := SelectActivity(ActivityList)
EventTime := min(MaxSimTime, t)
Event := (a,mode)
SojournTime := EventTime − SimTime

(∗ update performance measures ∗)
for ∀ rvar�

i = (rrate�, rimp�, ·, ·) ∈ RV � do
Rewardrvar�

i
+= rrate�(State) ∗ SojournTime

if t ≤ MaxSimTime then Rewardrvar�
i

+= rimp�(Event)

(∗ execute state change ∗)
SimTime := EventTime
if t = ∞ then State := Exec�(Event, State)

until stop condition reached (e.g., SimTime ≥ MaxSimTime)

(∗ compute performance measures ∗)
for ∀ rvar�

i ∈ RV � do Resultrvar�
i

:=
Rewardrvar�

i
SimTime

Algorithm 7.4: Next-event time advance simulation of steady-state behavior

dead state, which is handled by the algorithm by taking the minimum of the
maximum simulation time and the time of the next scheduled event t. This
takes effect also for the case when the next-event time is greater than the spec-
ified maximum simulation time to correctly cut the time interval. The event
to be executed and the remaining sojourn time in the current state (either
until event execution or maximum simulation time) are set in addition.

Now all prerequisites are available to update the performance variables.
The rewards accumulated so far are stored in Resultrvar�

i
. Rate reward

earned in the current state is added first, multiplied by the actual sojourn
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time. If the event shall be executed before MaxSimTime, the corresponding
impulse reward is added as well. Afterward the result accuracy achieved
so far can be estimated with statistical techniques, but this is omitted in
Algorithm 7.4.

With all state-related instructions done, the algorithm executes the event
by setting all state variables to the new value as specified by the execution
function Exec�(·, ·) of the SDES model for the event.

The main simulation loop repeats until some predefined stop condition is
reached. Some notes on the stop condition and its statistical significance have
been given above.

A final estimation of the performance measures is computed at the end
of the algorithm. Only time-averaged measures are allowed in a steady-state
evaluation, thus all intermediate results for accumulated reward are divided
by the overall simulation time.

The asymptotic complexity of SteadyStSimulation is given by the
number of times that the main simulation loop is executed multiplied by the
complexity of the UpdateActivityList procedure (see above). The loop
is carried out once for every event (or activity) being executed. The stop
condition implies the number of loop executions. In the case of a predefined
maximum simulation time, the expected number of events per simulation time
might be estimated from the model actions, leading to an approximation of
how many events will be executed.

7.2.3 Estimation of Transient Measures

Algorithm 7.5 shows the transient simulation algorithm TransientSimula-

tion. A SDES model and its performance measures are the input parameters
just like for the steady-state simulation. The output is again an estimated
value for each measure in Resultrvar�

i
. In a simulation that is intended to es-

timate performance measures at some fixed point of time or for a known
interval, there is obviously no need to continue the simulation when the
simulation time exceeds the maximum of the observed time points. Such
a simulation is called terminating, and the final estimation is computed
based on the results of several terminating runs with the equal initial con-
ditions and different random number streams (independent replications
scheme).

The inner loop (repeat .. until) implements the event list update, activ-
ity selection, and state changes identical to the main simulation loop of the
steady-state simulation (Algorithm 7.4). The simulation always starts with
the initial SDES state at simulation time zero. The computation of rewards
is, however, different for transient measures. For instant-of-time measures
(lo = hi), the rate reward for the current state is added to the reward if
the observed time point is inside the current state sojourn time. In the case
of an interval-of-time measure (lo < hi), the intersecting time span between
the observation interval and the current state’s sojourn time is derived first
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TransientSimulation (SDES)

Input: SDES model with performance measure definitions
Output: estimated values of performance measures rvar�

i ∈ RV �

(∗ initializations ∗)
Runs := MaxSimTime := 0
for ∀ rvar�

i = (·, ·, [lo, hi ], ·) ∈ RV � do
Rewardrvar�

i
:= 0

MaxSimTime := max(MaxSimTime, hi)
while not stop-condition reached do

for ∀sv i ∈ SV � do State(sv i) := Val0
�(sv i)

ActivityList := ∅; SimTime := 0
Runs++
repeat (∗ main simulation loop ∗)

(∗ get and select executed activity ∗)
UpdateActivityList(State, ActivityList, SimTime)
(a,mode, t) := SelectActivity(ActivityList)
EventTime := min(MaxSimTime, t)
Event := (a,mode)
SojournTime := EventTime − SimTime
(∗ update performance measures ∗)
for ∀ rvar�

i = (rrate�, rimp�, [lo, hi ], ravg�) ∈ RV � do
if lo = hi ∧ SimTime < lo ≤ EventTime then

(∗ instant-of-time measure ∗)
Rewardrvar�

i
+= rrate�(State)

else (∗ interval-of-time measure ∗)
CoveredTime = min(hi , EventTime) − max(lo, SimTime)
Rewardrvar�

i
+= rrate�(State) ∗ CoveredTime

if lo < EventTime ≤ hi then
Rewardrvar�

i
+= rimp�(Event)

(∗ execute state change ∗)
SimTime := EventTime
if t = ∞ then State := Exec�(Event, State)

until SimTime ≥ MaxSimTime
(∗ compute performance measures ∗)
for ∀ (·, ·, [lo, hi ], ravg�) ∈ RV � do

Resultrvar�
i

:=
Rewardrvar�

i
Runs

if ravg� then Resultrvar�
i

:=
Rewardrvar�

i
hi−lo

Algorithm 7.5: Next-event time advance simulation of transient behavior

(CoveredTime). The rate reward associated with the current state is added
to the accumulated reward, multiplied by the time span. If the next event
is scheduled for execution within the observation interval, its corresponding
impulse reward is added as well.
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The inner main simulation loop stops when the current simulation time
exceeds the maximum simulation time, which in the transient case is set to the
maximal upper bound hi of all observation intervals. Dead states thus do not
lead to problems, and the choice of this stop condition is independent from the
statistical accuracy of the results. Every single transient simulation runs, i.e.,
every loop execution gives one result for each performance measure. Many runs
thus have to be carried out to estimate the accuracy of the results. The number
of runs is counted in variable Runs. The stop condition of the outer while-loop
depends on the result of a statistical check of the result quality achieved so
far. Some notes on this issue have been given at the beginning of this section.
In the case of a transient simulation, subsequent results are, however, not
correlated, because each one is the result of an independent simulation run.
The random number streams obviously must be different for that reason (e.g.,
a different seed value needs to be set). Independent replications can be started
to return more individual results in the same time. The initial transient phase
naturally needs to be obeyed and not discarded.

The final estimations for the performance measures are computed as the
mean over all runs after the outer loop is finished. The result is then an ac-
cumulated reward, which has to be divided by the observation interval length
for time-averaged measures.

For an estimation of the asymptotic computational complexity, the number
of executions of the inner loop is important. The number of processed events
until MaxSimTime can be estimated from the average delays and the average
number of executable variants. The complexity of one event processing is the
same as for the steady-state simulation. It is hard to estimate the number
of times that the outer loop is executed, because it depends on the speed of
accuracy increase for the performance measures and the chosen stop condition.

7.3 Numerical Analysis

As opposed to simulation, which follows one randomly selected path through
the possible behaviors of a system, numerical analysis techniques capture the
whole stochastic process. The reachability graph RG is the usual approach
for this task; an algorithm for its generation for SDES models is given in
Sect. 7.3.1. The dynamic behavior of the model is given by the initial state
and the subsequent activity executions.

Mathematical formulas are numerically solved to derive exact measure
values from the process representation in a second step. A stochastic process is
obviously unlimited in time at least if a steady-state analysis is required, and it
is thus impossible to store all paths in a simulation-like fashion. Simplifications
are necessary which allow the complete derivation and storage of the process
information for any practical algorithm.

The type of process depends on the used delays and whether certain ac-
tivities are enabled together in one state or not. The delays associated with
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action variants considered in the techniques used here [127, 130] can either
be zero (immediate), exponentially distributed, deterministic, or belong to a
class of general distributions called expolynomial. Such a distribution function
can be piecewise defined by exponential polynomials and has finite support.
It can even contain jumps, making it possible to mix discrete and continu-
ous components. Many known distributions (uniform, triangular, truncated
exponential, finite discrete) belong to this class. Details are given in Sect. 1.4.

The numerical analysis algorithm described in Sect. 7.3.3 only works for
models with the following restriction: there must not be a reachable state
in which there is more than one timed activity with nonexponentially dis-
tributed delay. This is the state of the art for practical algorithms due to
numerical problems. The theoretical background for the numerical analysis
of less restricted models with concurrent activities including fixed delays has
been covered in [130,224,229]. Note that therefore the maximum allowed en-
abling degree of actions with timed nonexponentially distributed delay (Fgen)
is one, and there must only be one of them enabled in any reachable state.
Formally, we require

∀σ ∈ RS :
∣
∣
{
v ∈ Executable(σ) | Delay�(v) ∈ Fgen

}∣
∣ ≤ 1

The underlying stochastic process of such an SDES model is then a Markov
regenerative (or semiregenerative) process, and an algorithm for its steady-
state evaluation is presented in Sect. 7.3.3.

If the delays of all action variants that are executable in any state of an
SDES model are either exponentially distributed or zero, the stochastic process
is a CTMC.

∀σ ∈ RS : Executable(σ) ⊆ AV exp ∪AV im

Algorithms for the transient and steady-state evaluation of reward measures
are given in Sect. 7.3.2 for this case.

7.3.1 Reachability Graph Generation

All standard numerical analysis methods require the derivation of the com-
plete graph of possible states and state transitions, the reachability graph RG.

Function GenerateFullRG shown in Algorithm 7.6 computes the full
reachability graph of SDES models with the restrictions motivated above.
Input to the algorithm is the SDES model – in difference to simulation, the
reachability graph generation is independent of the performance measures
defined inside. The function returns the reachability graph RG consisting of
states and state transitions.

The initial state is set according to the SDES model specification, and
it is the first element of the reachability set and the set of new states. In a
second step the set of actions is sorted into an ordered list ActionList with
immediate delays coming first, and among them sorted by priority. This is
done to improve the efficiency of the algorithm, because only the enabled
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GenerateFullRG (SDES)

Input: SDES model
Output: The reachability graph RG = (RS , RE)

for ∀sv i ∈ SV � do InitialState(sv i) := Val0
�(sv i)

NewStates := RS := {InitialState}
ActionList := ∅
for ∀a ∈ A� do

(∗ sorted ActionList: immediate with high priorities come first ∗)
e :=first entry in ActionList
while

(
Delay�(a) ∈ F im ∧ Delay�(e) ∈ F im ∧ Pri�(a) < Pri�(e)

)

∨ (Delay�(a) /∈ F im ∧ Delay�(e) ∈ F im ) do
e :=next entry in ActionList

insert a into ActionList before e

while NewStates = ∅ do (∗ main loop ∗)
select State ∈ NewStates; NewStates := NewStates \ {State}
(∗ compute enabled actions ∗)
Priority := 0; Vanishing := False
EnabledVariants := ∅
a := first entry in ActionList
while not Vanishing ∨ (Delay�(a) ∈ F im ∧ Priority = Pri�(a)

)
do

Enabled := EnabledModes(a,State)
if Enabled = ∅ ∨ Deg�(a, State) = 0 then continue
if Delay�(a) ∈ F im then

Vanishing := True; Priority := Pri�(a)
for ∀mode ∈ Enabled do

EnabledVariants := EnabledVariants ∪ {(a,mode)}
a := next entry in ActionList

(∗ insert states and state transitions into graph ∗)
for ∀ Event = (a,mode) ∈ EnabledVariants do

NewState := Exec�(Event, State)
if NewState /∈ RS then

NewStates := NewStates ∪ {NewState}
RS := RS ∪ {NewState}

RE := RE ∪ (State, NewState, a,mode)
return RG = (RS ,RE )

Algorithm 7.6: Generation of the full reachability graph

actions with the highest priority have to be considered in the later enabling
check for each state.

The main loop is executed until the set of states which have been newly
discovered and that are not yet analyzed (NewState) is empty. Otherwise one
arbitrary state is taken from the set and analyzed. At the point when this set
is empty, no further state can be reachable from the initial state.
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As a first step, the set of enabled actions with highest priority level is
derived in the while not .. loop. The resulting set of action variants is stored
in variable EnabledVariants. The subsequent for-loop computes for each of
the possible events the destination state NewState. It is added to the set of
new states NewStates as well as the reachability set RS if it is not yet known.
The corresponding state transition is added to the reachability graph RE .

The asymptotic complexity of the algorithm is O(|RS | |AV |), because the
enabling of every action variant ∈ AV of the model has to be checked for
every reachable state ∈ RS . An improvement of speed can be reached in a
similar way to as it has been explained in the simulation context already.
If sufficient main memory is available, we can store the set of previously en-
abled action variants together with every newly visited state in NewStates.
When such a state is analyzed, the set of enabled events in it can be com-
puted more efficiently if it is known from the model structure which events
may have become disabled and enabled by the recent state transition. The
complexity then reduces to O

(
|RS |

∣
∣AV ′∣∣

)
, if we denote by AV ′ an upper

bound on the number of action variants that are influenced (enabled or dis-
abled) by the execution of an enabled variant. In most model classes, this
number is significantly smaller than |AV | because of local action influence.

The reachability graph describes the stochastic process with its reachable
states properly only if the combinations of delays in a model do not inhibit
state transitions that are otherwise possible. Imagine for instance two conflict-
ing action variants with deterministic delay, which become enabled together.
The one with the smaller delay will obviously be executed first and thus dis-
able the other one in every case. The reachability graph generation algorithm,
however, relies on the absence of such situations, because both executions
would lead to valid state transitions. Due to the restriction of timed delays
to exponential ones and a maximum of one nonexponential enabled per state,
such a situation can never happen. This is due to the support 0 . . .∞ of the ex-
ponential distribution, which leads to a nonzero probability for the execution
of all conflicting timed action variants in any state.

The reduced reachability graph RRG can be constructed from the full one
by removing state transitions that correspond to action variants with an imme-
diate delay (Delay�(·) ∈ F im). The idea is to avoid additional states in which
the stochastic process does not spend any time, and which are thus of less in-
terest during the subsequent analysis steps. Efficient algorithms for the direct
generation of the reduced reachability graph (coined “on-the-fly elimination”)
have been proposed in the context of stochastic Petri nets [14,229,230]. Paths
of immediate state transitions are followed in a recursive manner to compute
all possible paths from the state after a timed state transition to the subse-
quent timed state. The rare case of circular state transition paths containing
only immediate actions (vanishing loops) can be resolved [66].

It should be noted that the reduction is purely done for efficiency reasons;
the standard numerical solution algorithms work with the full graph as well.
The stochastic process as defined in Sect. 2.3.2 for SDES models does visit
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vanishing states, which is for instance important to cover impulse rewards
related to actions with an immediate delay. Advantages and disadvantages of
both approaches are, e.g., discussed in [28, 65].

Impulse rewards associated with immediate state changes cannot be cap-
tured easily if the standard approach of elimination of the vanishing states is
taken. Throughputs of immediate actions, therefore, cannot be directly com-
puted with the presented algorithms. We restrict reward variables for the
numerical analysis accordingly.

∀v ∈ AV im : rimp�(v) = 0

This is, however, not a significant restriction for most applications, because it
is usually possible to express the throughput of immediate actions indirectly
using surrounding timed actions in the model classes. Additional remarks on
this issue are given on page 150.

7.3.2 Continuous-Time Markov Chain Analysis

The reduced reachability graph of an SDES model with only immediate and
exponentially distributed delays of action variants is isomorphic to a CTMC,
because state sojourn times and state transitions are memoryless and the
reachability set is discrete. The memoryless property then allows to compute
the further evolution of the model dynamics without the knowledge of the
action state – the state variable values are sufficient. This greatly simplifies
the analytical treatment, and has lead to the attraction of models with only
exponentially distributed (and zero) delays.

The time-dependent rate of state changes per time unit is constant for state
transitions with exponentially distributed delays because it is memoryless.
In fact, the parameter λ of the exponential distribution equals this rate as
well as the inverse of the mean delay. For the numerical analysis of an SDES
model with an underlying CTMC, we are interested in the state transition
rates for the tangible reachable states. The rate qij shall denote the overall
state transition rate from state σi to state σj .

As multiple rates (just like flows) add up, the rates that correspond to
different activities leading to the same state change are added. This applies
also to state transitions due to one action variant with an enabling degree
greater than one. In a simulation, a corresponding number of activities is kept
in the event list. In contrast to that, it is possible to account for multiple
enabling during a numerical analysis through simply multiplying the rate
by the enabling degree. Probabilistic distribution of flows between different
destination states is the consequence of conflicting immediate state changes
after a timed one. The corresponding path probabilities until the arrival at
the next tangible state thus have to be multiplied accordingly. It should be
noted that all these simplifications are only possible due to the restriction of
only exponentially distributed delays.
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The individual state transition rates qij ; 1 ≤ i, j ≤ |RRS | are thus derived
from the reduced reachability graph as follows. σ′

i = Exec�((a,mode), σi) is a
shorthand for the state that is reached from σi after the execution of action
variant v = (a,mode).

qij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

(σi,σj ,v ,·)∈RRE

Delay�(v)=1−e−λt

VDeg�(v , σi)λP{σ′
i −→σj} if i �= j

−
∑

i�=k

qik if i = j

(7.2)

We are interested in every probability πi(t) of an SDES model to be in
one of its states σi at time t. The actual performance measures are derived
from these intermediate results later on.

The evolution of the transient state probabilities can be described by the
(ordinary differential) Kolmogorov equation. It can be informally interpreted
as the change of the state probabilities over time equaling the sum of all state
transition rates flowing in and out of a state σj .

∀σj ∈ RRS :
d
dt

πj(t) =
∑

σi∈RRS

πi(t) qij

To simplify notation, a generator matrix Q = [qij ] of proper dimension
|RRS | × |RRS | is defined that holds all entries of the formula above. As Q is
a rate matrix, the diagonal entries are set such that all row sums equal zero.
The equation then simplifies to

d
dt

π(t) = π(t)Q

An initial condition must be set in order for the system to be fully specified.
In an SDES model, we assume that the behavior starts at time zero with the
initial state σ0.

∀σi ∈ RRS : πi(t) =

{
1 if σi = σ0

0 otherwise

Transient Numerical Analysis

The transient state probabilities π(t) can be derived following:

π(t) = π(0) eQt

for which the matrix exponential is defined similarly to the series expansion

eQt =
∞∑

k=0

Qk

k!
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Practical numerical approaches to the derivation of π(t) are not
straightforward. The direct way using a truncated computation of the sum
is numerically difficult and unstable [299]. Uniformization [185] is a com-
monly used technique that maps the CTMC on a discrete-time Markov chain
(DTMC) as follows. A probability matrix P for this derived process is ob-
tained after dividing Q by a value q, with q being greater or equal2 than the
biggest entry in Q. I denotes the identity matrix.

q ≥ max
i

(|qii|), P =
1
q
Q + I

The transient state probabilities can then be derived from

π(t) = π(0) eQt = π(0) eqt(Q−I) = π(0)
∞∑

k=0

Pk (qt)k

k!
e−qt

The (qt)k

k! e−qt values are Poisson probabilities which can be efficiently com-
puted [107, 130]. The advantage of this problem translation is the better nu-
merical stability and a quantifiable approximation error for the truncation of
the sum.

Performance measures that are not to be taken in steady-state can be
derived from the transient state probability vector π(t). We restrict our-
self to instant-of-time measures here; measures with an observation interval
length greater than zero would require the computation of an integral over the
instant-of-time values. If impulse rewards are zero, it is sufficient to compute
the expected sojourn times in states during the observation interval. This can
be done using methods similar to the one applied in the subsequent section
for the derivation of the C matrix.

In the restricted case of a reward variable rvar� = (rrate�, rimp�, rint�, ·)
with rint� = [lo, hi ] and lo = hi (instantaneous transient analysis), the result
is computed as a weighted sum of the corresponding rate rewards for all
tangible states:

Resultrvar� =
∑

σi∈RRS

πi(lo)rrate�(σi)

Transient analysis with lo < hi (interval-of-time or cumulative transient) is
possible with an adaptation of the uniformization technique, and is presented
in [59, 278].

Steady-State Numerical Analysis

The term π(t) denotes the transient state probability vector at time t, while
π corresponds to the probability vector in steady-state (if it exists). It can be

2 Many references choose q = 1.02 maxi(|qii|).
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interpreted as the probability that the process is found in each state if it is
observed after an infinitely long run, or as the time fractions which are spent
in each of the states. The steady-state value (the limiting state probability)
is obviously reached after an infinitely long observation of the stochastic
process.3

π = lim
t→∞

π(t)

The limit exists if the CTMC of the model is ergodic. The time-averaged
limit

π = lim
t→∞

1
t

∫ t

0

π(x) dx

exists for models with fewer restrictions, and is the basis of steady-state simu-
lation. If both limits exists, they are equal. It is not necessary to compute the
transient values numerically until convergence, because the transient proba-
bility equation can be transformed into

∀σj ∈ RRS : 0 =
∑

σi∈RRS

πi qij or 0 = πQ

which can also be interpreted that in steady-state there is no change in the
transient state probabilities, and thus the flow into each state equals the flow
out of it. The linear system of equations is thus coined balance equations.
A normalization condition is necessary in addition, which assures that the
total probability spread over the vector entries is one.4

1 =
∑

i,σi∈RRS

πi or 1 = π 1T

Both equations together have a unique solution,5 which can be derived by
standard numerical algorithms for the solution of linear systems of equations
like successive over-relaxation (SOR; see, e.g., [298]).

The result for a performance measure rvar� = (rrate�, rimp�, rint�, ravg�)
for steady-state behavior can finally be computed from π as follows. In the
steady-state case, only rint� = [0,∞], ravg� = True are allowed, onto which
case rint� = [∞,∞], ravg� = False is mapped (see above). Let λ(v) de-
note the parameter of the exponentially distributed delay of action variant
v : Delay�(v) = 1 − e−λt.

Resultrvar� =
∑

σi∈RRS

πi

⎛

⎝rrate�(σi) +
∑

vj∈Executable(σi)

λ(vj)rimp�(vj)

⎞

⎠

A weighted sum over all tangible states is derived. The rate reward for the
state is added first, and the sum of all impulse rewards for executable action

3 Assuming that the state space contains only one recurrence class.
4 1 is a vector of appropriate size, where all entries equal one.
5 One equation in the system 0 = πQ is always redundant.
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variants in the state multiplied by its rate λ.6 This is done because the exe-
cution frequency of an action variant v equals λ(v) times the probability that
it is executable.

7.3.3 Steady-State Analysis of Non-Markovian Models

For the numerical analysis of SDES models containing action variants with
nonexponentially distributed delays in steady-state, the vector π of limiting
state probabilities is again to be derived as in the CTMC case. General analysis
algorithms realized so far for this class of models require that at most one
activity with nonexponentially delay is executable in every reachable state as
described above.

State transitions between tangible states occur only with exponentially
distributed delays in the CTMC case. With nonexponentially distributed de-
lays the analysis becomes more complex, and it is necessary to distinguish
between states in which only action variants with exponentially distributed
delays are executable (RRSexp) and the ones with nonexponential action vari-
ants (RRS gen). There is always only one action variant executable in states
out of RRSgen because of the adopted restrictions. We denote by RRSgen

v the
set of tangible states in which v ∈ AV gen is executable.

RRSexp = {σ ∈ RRS | Executable(σ) ⊆ AV exp}
∀v ∈ AV gen : RRSgen

v = {σ ∈ RRS | v ∈ Executable(σ)}

Obviously then the obtained reachability subsets are disjoint, and together
they contain all tangible states.

∀vi, vj �= vi ∈ AV gen : RRSgen
vi

∩ RRSgen
vj

= RRSgen
vi

∩ RRSexp = ∅

RRS = RRSexp ∪
⋃

v∈AV gen

RRSgen
v

In case of a CTMC, only the corresponding linear system of equations
had to be solved. For models containing nonexponential action variants, an
additional step is required. The underlying stochastic process is a Markov
regenerative process. It is only memoryless at some instants of time, called
regeneration points. If an action variant with nonexponentially distributed
delay is executable in a state, the next regeneration point is chosen after
execution or disabling this action variant. The execution time of the next
exponential action variant is taken otherwise.

6 This method is not applicable for impulse rewards associated with immediate
action variants, which were required to be zero above. Appropriate algorithms
require to keep the full reachability graph [59] or to indirectly derive the execution
frequencies by considering related timed action variants.
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Following results of Markov renewal theory, a discrete-time embedded
Markov chain (EMC) is defined for the regeneration points. Its state set is a
subset of the reduced reachability set RRS : included are exponential states
RRSexp and all general states σ ∈ RRSgen which are directly reachable from
an exponential state.

The solution of the discrete-time EMC requires the stochastic matrix P of
one-step state transition probabilities. An additional matrix C of conversion
factors has to be computed for a later mapping of the EMC results to the
original state set RRS as well. P describes the probabilities of state changes
of the EMC between two regeneration points, while C captures the conditional
sojourn times in the states between such two regeneration points.

There are some states of the original process which are not states of the
EMC, specifically the states in which a nonexponential action variant is exe-
cutable, and which are not directly reachable from RRS exp . The time spent
in those states from the enabling of a nonexponential action variant until its
execution or disabling (the expected sojourn time) is kept in entries of the C
matrix. In addition to that, the diagonal entries of the C matrix contain the
mean sojourn times in tangible states, which are needed for a conversion at
the end of the algorithm. For states with solely exponential action variants
enabled, only the diagonal entry of the corresponding C matrix row is dif-
ferent from zero and can be computed directly from the reduced reachability
graph.

∀σi, σk ∈ RRSexp :

Pik =

{
0 for i = k
qik

−qii
otherwise

Cik =

{
1

−qii
for i = k

0 otherwise

∀σi ∈ RRSgen
v , σk ∈ RRS :

Pi =
∑

σj∈RRS

Ωv
ij P{σj −→σk}

Cik =

{
Ψv

ik for σk ∈ RRSgen
v

0 otherwise

The qik values are derived as in (7.2) while taking only exponential states into
account.

To compute the entries of the P and C matrix for action variants with
nonexponentially distributed firing times, the evolution of the stochastic pro-
cess during the enabling of such an action variant is analyzed. At most one
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action variant of this type can be executable per state for this type of anal-
ysis. Therefore only exponential action variants may be executed during the
enabling period, resulting in a continuous-time subordinated Markov chain
(SMC) of the nonexponential action variant.

The SMC for an action variant v ∈ AV gen with nonexponentially dis-
tributed delay Delay�(v) ∈ Fgen is described by the following information.
RRSgen

v are the states in which v is enabled. Matrix Qv of the subordinated
process contains the exponential rates of action variants, which are enabled
in parallel to v in states from RRS gen

v . The values of qij are again computed
as in (7.2).

Qv =

[{
qij if σi ∈ RRSgen

v

0 otherwise

]

The transient and cumulative transient analysis of this Markov chain lead
to the P and C matrix entries via the computation of Ω and Ψ for every
nonexponential variant v ∈ AV gen

∀v ∈ AV gen :

Ωv =
∫ ∞

0

eQv t Delay�′(v)(t) dt

Ψv =
∫ ∞

0

eQv t (1 − Delay�(v)(t)) dt

where Ωv denotes the matrix of state transition probabilities of the SMC at
the end of the enabling period of v , and Ψv the matrix of expected sojourn
times of the states of the SMC process during the enabling period of v . Delay�′

denotes the probability density function, i.e., the derivative of the delay dis-
tribution. The uniformization technique, which has already been mentioned
for the transient analysis of Markovian models, can be applied for both com-
putations after some adaptations [130]. The difference is that it is not possible
any more to simply integrate until a known transient time t, because the exe-
cution time of the nonexponential action variant is a random value. However,
it is sufficient to change the Poisson factors accordingly.

Ωv =
∞∑

k=0

Pk

∫ ∞

0

(qt)k

k!
e−qt Delay�′(v)(x) dx

Ψv =
∞∑

k=0

Pk

∫ ∞

0

(qt)k

k!
e−qt

(
1 − Delay�(v)(x)

)
dx

An efficient combined algorithm for both is available for the case of delay
distributions that are a mix of finite polynomial and exponential functions,
which are sufficient to fit most practical distributions arbitrarily well. In that
case the integrals over the probabilities can be derived from the Poisson prob-
abilities (qt)k

k! e−qt. Left and right truncation points for the sum are known for
a given upper bound on the approximation error [130].
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The vector γ of limiting state probabilities for the EMC is computed by
solving the following set of linear equations. Standard algorithms like succes-
sive over-relaxation and sparse Gaussian elimination are again applicable for
this task [299].

γ (P − I) = 0,
∑

i

γi = 1

The limiting state probabilities π of the actual stochastic process can
finally be obtained as the mean sojourn times in each state between two
regeneration points for states ∈ RRSexp . Probabilities in γ of initial general
states have to be distributed over their subsequent SMC states as described
in the corresponding row of C. Formally, both transformations correspond to
multiplying the EMC solution vector by C. A normalization step ensures that
the sum of probabilities in π equals one.

γ′ = γ C, π =
1

∑
i γ′

i

γ′ or simply π =
γ C

γ C1T

The user-defined performance measures are finally calculated from the state
probability vector π. This is done in a way similar to their derivation for
steady-state CTMC cases as described on page 150. However, there is one
subtle difference: we cannot specify a λ(·) value for action variants with non-
exponentially distributed delays. If such an action variant may never be dis-
abled by the execution of another variant (which can usually be checked on
the model structure with the absence of conflicts), it is sufficient to interpret
λ(v) for a v ∈ AV gen as the reciprocal value of the mean delay or the mean
rate of executions per time unit, i.e.,

∀v ∈ AV : λ(v) =

⎧
⎪⎨

⎪⎩

λ if Delay�(v) = 1 − e−λt

1∫ ∞
0 tDelay�(v)(t) dt

if Delay�(v) ∈ Fgen

0 if Delay�(v) ∈ F im

Immediate action variants may not carry impulse rewards in this setting;
compare the footnote about the same restriction in the CTMC case above.

Notes

Quantitative evaluation of stochastic discrete event models has been an ac-
tive research field for a long time now, therefore only a small selection
of relevant literature can be given. Simulation algorithms and their the-
oretical background as well as related statistical issues are, e.g., covered
in [15–17,42, 105,117,150,219].

The numerical analysis methods presented in this text are based on the
work for stochastic Petri nets, which in term build upon results for Markov
chains and other similar stochastic processes. Analysis methods have been
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presented for the numerical steady-state [6,57,67,132,224,229] and transient
analysis of DSPNs [126, 161]. Numerical analysis techniques for other non-
Markovian models are, e.g., treated in [61, 126, 127,130,132,133].

The most important approaches for non-Markovian models are the follow-
ing. They are based on an EMC like the presentation in this text, for which
efficient steady-state solution methods are available [130, 226]. The method
of supplementary variables [130, 132] allows both steady-state and transient
numerical analysis [125]. Another method for the transient and steady-state
solution of the same class of models is based on an underlying Markov re-
generative stochastic process [57]. Some restrictions of the usable preemption
policies have been relaxed in [302].

In restricted cases, it is possible to solve models with more than one en-
abled nonexponential delay analytically. Cascaded DSPNs allow two or more
deterministic delays, if they are always concurrently enabled and the delays are
multiples of each other [129,130]. This technique is based on Markov renewal
theory. If all nonexponentially timed activities start at the same time, gener-
ally timed transitions may be concurrently enabled [271]. Another approach
to concurrent deterministic transitions observes the generalized semi-Markov
process at equidistant points, and obtains a system of integral state equations
that can be solved numerically [224, 229]. It has been implemented for the
special case of two deterministic transitions with equal delay in the software
tool DSPNexpress [227].

Models with only immediate and exponentially distributed delays can be
solved using simpler techniques [3–5,149,207].

Further information about stochastic processes in general and of SDES sub-
classes can, e.g., be found in [67,71,143,170,176,305]. The concept of impulse
and rate rewards is covered in detail in [284] and applied to multiformalism
SDES models in [82]. Their computation from non-Markovian stochastic Petri
nets is shown in [133].

An overview of tools that implement evaluation algorithms for stochastic
discrete event models is given in Chap. 12. The underlying idea of analysis
methods for an abstract model representation is the same as followed in [82].

A quite different approach is to interpret an SDES model as having a
discrete underlying timescale (as opposed to continuous time). The abstract
SDES model class in fact includes them as a special case, if all action delays are
described by probability distribution functions that contain only jumps. The
corresponding (generalized) probability density function is a set of weighted
Dirac impulses, i.e., a probability mass function containing the probabilities
of the discrete values. Figure 7.1 shows a brief overview of some relationships
between Markovian models with underlying continuous and discrete timescale.

Both resulting stochastic processes CProc and SProc (as they have been
defined in Sect. 2.3.2) then have state changes only at discrete points in time.
The definitions and discussion of Sects. 2.3 and 2.4 are, however, valid for this
special case as well. Instead of the continuous exponential distribution, the
discrete geometric distribution is used preserving the memoryless property.



156 7 Standard Quantitative Evaluation Methods for SDES

Continuous time Discrete time

Delay distribution Exponential or zero Geometric or zero

Stochastic process CTMC DTMC

Process description Rate matrix Q Probability matrix P

State equations d
dt

π(t) = π(t)Q π(t + Δt) = π(t)P

Steady-state solution 0 = π Q,
∑

πi = 1 π = π P,
∑

πi = 1

Transient solution π(t) = π(0) eQt π(t) = π(0)P� t
Δt	

Fig. 7.1. Discrete vs. continuous timescale

A DTMC underlies models in which only geometrically distributed delays are
allowed; discrete-time stochastic Petri nets (cf. the Notes of Chap. 5) are an
example. Because in every time step the execution probabilities are given by
the geometrical distribution, and the remaining activity delays (having only
some discrete values) can be stored together with the state, the performance
analysis does not pose mathematical problems. Moreover, as immediate and
deterministic action variants are special cases of the geometric distribution,
there is no problem in having any number of them enabled concurrently in a
state.

A drawback is the frequent occurrence of events at the same instant-of-
time, which require a subtle priority setting to avoid confusions. Section 7.1
discusses this issue. The main problem is, however, that the DTMC has to be
analyzed using a discrete-time step that equals the greatest common divisor
of all delays, which leads to an additional state space explosion if there are
delays which are much bigger than this GCD value. The remaining delays of
enabled actions lead to supplementary variables in the continuous case, which
are naturally discretized in the DTMC case. Only the number of remaining
discrete-time steps need to be stored in the state encoding to fulfill the Markov
property. Concurrent enabling of actions with a nonmemoryless delay distri-
bution is thus possible, but paid for with a significant increase in the state
space size.
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An Iterative Approximation Method

For many systems of real-life size, the state space is very large, which is known
under the term of state space explosion problem. Standard numerical analysis
techniques require to visit and store every individual state to produce a gen-
erator matrix to solve for the state probabilities (cf. Sect. 7.3.2). Although the
matrix is sparsely inhabited by nonzero values, which is obviously exploited
by all relevant algorithms, they still fail if the state space and the number
of state transitions become too big to be stored in the memory of available
computing hardware.

A lot of techniques have been developed to overcome this limitation. Some
more technical ideas store the state space especially efficient [14], or well orga-
nized on a hard disk. Others exploit symmetrical state space structures [54,55],
but are therefore restricted to models that exhibit this kind of structure.
Another branch of exact analysis methods for larger state spaces avoids to
store the whole generator matrix. Smaller submatrices are derived from model
parts and stored such that any generator matrix entry can be computed dur-
ing the execution of the solution algorithm. This is known under the term
Kronecker (or tensor) algebraic approaches. This technique was applied to
stochastic automata networks [265,267] and later adapted to stochastic Petri
nets [36,91,201]. Later advances in this field try to overcome some restrictions
like priorities and the use of immediate synchronization transitions among
others [92]. One remaining problem is the overhead induced by unreachable
states [35]. The Kronecker representation was improved by variants of matrix
diagrams [62]. Overviews of efficient storage and solution techniques are given
in [60, 63].

However, there are still restrictions in the size of the reachability set for
the individual methods. Even if the reachability graph and generator matrix
can be stored efficiently using structural techniques, the size of the proba-
bility vector itself remains a problem. Simulation or approximation methods
can only be used in these cases. Just like for the Kronecker technique, the
idea of decomposing a model into smaller ones and solving a combination of
smaller models has naturally attracted a lot of interest. The idea of these



158 8 An Iterative Approximation Method

decomposition methods is to avoid the computation of the whole state space
by dividing the original system into smaller subsystems.

This section describes an approximate evaluation method for Markovian
simple as well as variable-free stochastic Petri nets described in Sects. 5 and
6.5. The technique uses ideas presented in [40, 258–260] for the analysis of
GSPNs. The underlying idea is an aggregation of the state space, which keeps
significant properties of the model. The results have been presented in detail
in [108,109,112].

The approximation method requires three steps. The first decomposes the
original model into a set of n smaller subsystems and is described in Sect. 8.1.
It is based on a so-called MIMO graph, which captures paths in the model
structure. The idea behind this graph-based approach is to merge sequential
model elements iteratively. MIMO is short for multiple input and multiple
output elements. This aggregation overcomes the decomposition boundary
restrictions imposed, e.g., by approaches based on implicit places. Decompo-
sition can thus be done in an arbitrary way, and guarantees submodels that
are small enough to be analyzed.

Unfortunately in most cases, the submodels are not live in isolation and
thus cannot be evaluated directly. Therefore each submodel is supplemented
by an aggregation of the remaining model parts, forming a so-called low-
level system. A basic skeleton is derived as well, in which all submodels are
aggregated. The second step results in n low-level subsystems and the basic
skeleton, which is explained in Sect. 8.3.

In the third step, the performance measures of the original model are
approximately computed using the reduced models (cf. Sect. 8.4). An iterative
approximation technique is used similar to the response time approximation
method presented in [259]. The basic skeleton is used to take care of the
interaction between the low-level system evaluations.

The benefit of the overall method is that models with a much smaller
reachability graph need to be evaluated on the way, thus requiring less mem-
ory and often even smaller computational effort despite the more complex
algorithm. The main advantage is thus that models which are too complex for
a numerical analysis due to their state space size can be evaluated.

However, only approximate performance results are computed, and the
computation of bounds on the approximation error remains an open question
so far. Experiences show that the error is acceptable in most cases; it is less
than 3% for the majority of examples as well as the application analyzed in
Sect. 16.3. Exact structural aggregation techniques for a restricted class of
GSPNs have been proposed in [110, 111]. State-dependent transition delays
are computed for the aggregated models in the mentioned references. This
method can be applied to GSPN models without transition synchronization
to obtain better aggregations and thus lead to a smaller approximation error
of the iterative method presented in this chapter.
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8.1 Model Partitioning

The hierarchical structure of a vfSCPN model may guide the decomposition
process. This is a significant advantage with respect to other decomposition
approaches, where automated general decomposition methods are an open
problem. For each substitution transition (and thus each submodel), one sub-
system SS i is generated. A first decomposition substitutes each of these tran-
sitions on the highest level of hierarchy by one submodel. The decomposition
method is, however, not restricted to one level of hierarchy. If the state space
of a resulting low-level system is still too large to be handled, it is possible to
apply the decomposition to the substitution transitions at the next level auto-
matically. An algorithm for the efficient estimation of the resulting state space
size has been developed for this step, which does not require a reachability
graph generation [171].

Because only transitions are refined in the net class, the model is always
cut through surrounding places. From now on we call these places buffers of
the neighboring submodel(s).

8.2 MIMO Graph-Based Aggregation

After the decomposition step, it is clear where the original model is cut. The
next step is an aggregation, during which an aggregated version SS∗

i of every
subsystem SS∗

i is created. A pathwise aggregation method is employed which
results in a structural simplification. In [260], the aggregation method is based
on implicit places. This works only if the submodels have been selected by the
modeler skilfully. Moreover, aggregation based on implicit places leads to the
so-called spurious states, which hamper the result quality. The pathwise ag-
gregation presented here is much simpler and does not lead to spurious states.
Another advantage is that an arbitrary model decomposition is possible.

The idea is that each path corresponds to a possible token flow through the
system, which must not be destroyed during the aggregation. Flows of tokens
are thus maintained such that for the same input both the original and the ag-
gregated submodel have the same output. Based on a set of aggregation rules,
a directed graph of joins and splits in the submodel paths (the MIMO graph)
is identified and reduced. The rules are applied iteratively until no further
simplification is achieved. The resulting graph is then translated back into a
Petri net, resulting in one aggregated net for each decomposed submodel.

The method presented here is applicable to both simple Petri nets and
variable-free colored Petri nets (vfSCPN) as described in Chap. 5 and Sect. 6.5.
The reader is referred to these parts for the basic Petri net notation. The
following terms are used in the following, and an uncolored model is considered
for simplicity first.

The places connected to a subsystem are called buffers. The set of buffers
is denoted with B ⊆ P and the set of subsystems S ⊆ SPN with S = S1 ∪
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S2 ∪ . . . ∪ Sn, where Si ∩ Sj = ∅. The x ∈ (P ∪ T ) are called elements of a
Petri net. The preset (postset) of element x is denoted by •x (x•).

The general idea behind the aggregation methods is to substitute complex
Petri net structures by simple ones preserving some important properties of
the model like, e.g., liveness. It is obvious that simple sequences of places
and transitions can be aggregated without changing the token flows. Sim-
ply substituting each structure by one transition–place–transition sequence
changes the dynamic behavior of a submodel, if elements are present which
have multiple input and/or multiple output arcs. These elements are called
MIMO elements. The more complex behavior of them is captured in a di-
rected graph of MIMO elements, which is called initial MIMO graph and
explained in Sect. 8.2.1. The MIMO graph is iteratively aggregated, which
is described in Sect. 8.2.2. This yields an aggregated MIMO graph in which
all neighboring MIMO elements of the same type are merged together. From
the final aggregated MIMO graph, a Petri net model is derived, which is an
aggregation of the original submodel (see Sect. 8.2.3).

The method and the MIMO graph are described for uncolored Petri nets
first to make it easier to understand. The application to variable-free colored
Petri nets is shown in Sect. 8.2.4. A more detailed presentation of the method
is given in [112].

To explain the method, an example model after an imaginary decomposi-
tion is shown in Fig. 8.1. Places buffer1 through buffer6 are buffers connect-
ing the submodel with the environment. The aggregation method is, however,
not restricted to such a simple structure of a submodel. It is also possible
that the buffers are both input and output buffers or that there are loops
containing them. In the figure both the buffers and the MIMO elements are
marked. Except for P5 the elements are MIMO elements due to the fact that
they have more than one input or output arc. P5 is a MIMO element because
input and output arcs have different multiplicities.

8.2.1 The Initial MIMO Graph

During the transformation of a Petri net model into a MIMO graph, only
selected model elements – namely the MIMO elements – are taken into con-
sideration. A MIMO element of a Petri net is defined as follows. The Petri
net element x ∈ P ∪ T is a MIMO element if at least one of the following
properties holds:

– |•x| �= 1 ∨ |x•| �= 1 – the number of input or output elements differs
from one

– x ∈ P,m0(x) > 0 – the initial marking is not empty
– ∃y ∈ •x, z ∈ x• such that there are different arc cardinalities on the arcs

from y to x and from x to z
– x is used in a guard function, any marking-dependent term or a reward

variable definition
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buffer1 buffer2 buffer3

T3T2T1

P2P1
2

P3

T6T5T4
2

P6P5 P7

T8T7

P8 P9 P10

T10T9

P11 P12

T13T12T11

buffer4 buffer5 buffer6

Fig. 8.1. Explanatory example

There are two types of MIMO elements: MIMO-P and MIMO-T elements,
depending on whether the original model element is a place or a transition.
The MIMO graph is a directed graph with the MIMO elements as vertexes.
The arcs of the MIMO graph are related to the transitive arc relationship of
the underlying Petri net. MIMO-P elements are labeled with their associated
initial marking while the arcs are labeled with their corresponding multiplic-
ity. Arc multiplicities between MIMO elements are derived as the sum of the
cardinalities of all paths in the original model that connect the two MIMO
elements without visiting other MIMO elements. There is exactly one cardi-
nality in all Petri net arcs of one individual path, because a change in the
cardinality would lead to an additional MIMO element following the third
rule of the definition above.

It has already been stated that only MIMO elements are “interesting” for
the MIMO graph-based aggregation, because all other places and transitions
are part of simple sequences.1 In the first step of the aggregation method, the
Petri (sub)net is transformed into an initial MIMO graph. All MIMO elements

1 They are called SISO elements in contrast.
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2

P12

buffer6buffer5buffer4

P1 T2

T5P5

T7 T8

T9

P11

T12

T10

buffer1 buffer2 buffer3

2

Fig. 8.2. Initial MIMO graph of the example

including the buffers are marked in the example (Fig. 8.1). The resulting initial
MIMO graph is depicted in Fig. 8.2.

The algorithm to derive such an initial MIMO graph checks for every Petri
net element whether the properties given in the definition hold, and marks
it as being a MIMO element in that case. Take for example place P1. It is a
MIMO-P element because it has more than one output element. In addition
to that, there are differing input and output arc cardinalities. The associated
vertex in the directed graph is labeled identically (P1). Following the left side
of the model, the next MIMO element is P5 because the input and output
arcs have different multiplicities. T7 is a MIMO-T element that splits the
path with two output places, followed by T9 and so on. Because there are two
different transitive connections (or paths) between T7 and T9 in the Petri net,
the multiplicities of the two paths have to be added resulting in 2 to derive the
cardinality of the connecting MIMO arc. The last MIMO element of the paths
with buffer1 in the preset is P11. After derivation of the MIMO graph for
all paths with buffer1 in the preset, a second root buffer2 is inserted into
the MIMO graph and the associated paths are analyzed. If a MIMO element
already exists in the MIMO graph, only a new arc to this vertex is inserted.
The MIMO graph shown in Fig. 8.2 is derived as a result.

8.2.2 Aggregation of the MIMO Graph

The initial MIMO graph is further simplified by applying different aggregation
rules. Neighboring MIMO elements of the same type can be merged if the
element in the preset has no other output arcs or if the element in the postset
has no other input arcs. Figures 8.3 and 8.4 show these merging rules for
neighboring elements of the same type (X in the figure stands for either T or P).
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Fig. 8.3. First aggregation rule
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Fig. 8.4. Second aggregation rule

There are two special aggregation rules related to buffers in addition. If
an input (output) buffer is connected with a MIMO-P element, both can be
merged if the MIMO-P element has no other input (output) arc. Merging
neighboring MIMO elements of the same type deletes only the arc connecting
both while all the others are kept. An element can be deleted if it is no longer a
MIMO element after an aggregation. The initial marking of MIMO-P elements
is added during a merge.

See for instance the neighbors T7 and T9 in the initial MIMO graph shown
in Fig. 8.2. Both can be merged into one MIMO-T element Tm1 with the input
arc of the MIMO-T element T7 and the output arc of the MIMO-T element T9
(the same applies to T8 and T10 which result in Tm2). In Fig. 8.2, the elements
which can be merged are marked. It is for instance not possible to merge T2
with T5 because T2 has another output arc and T5 has another input arc.
P1 and P5 can be merged applying the second aggregation rule, resulting in
Pm1. The aggregated MIMO graph after the first aggregation step is shown in
Fig. 8.5 (left).

Possible simplifications in the resulting MIMO graph are again marked in
the figure. Tm1 is not a MIMO element any more and can be deleted, leading
to a direct connection between Pm1 and P11. T5 and Tm2 are merged following
the aggregation rules and form Tm3. buffer1 and Pm1 can be aggregated with
the special buffer rule, which leads to buffer1m. The result is shown in Fig. 8.5
(right).
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buffer6buffer5

T12

Tm2

P12

T2

buffer2 buffer3

buffer4

Tm1

P11

buffer1

Pm1
T5

buffer3buffer1m buffer2

buffer6buffer5buffer4

T12

Tm3

P11 P12

T2
2

Fig. 8.5. MIMO graph after the first and second aggregation steps

buffer6buffer5buffer4

T12

Tm4

P11 P12

buffer3buffer1m buffer2

Fig. 8.6. Final aggregated MIMO graph

There is only one aggregation step possible in the shown graph: T2 and Tm3
can be merged. Figure 8.6 shows the final aggregated MIMO graph. No more
MIMO elements of the same type are connected. No other MIMO-P elements
can be merged with buffers, and all remaining elements are MIMO elements.

8.2.3 Translation into an Aggregated Petri Net

After the simplification of the MIMO graph, the result needs to be transformed
back into a Petri net. This translation is simply done by substituting each
MIMO element by the corresponding Petri net element. Figure 8.7 shows the
submodel example after translating the aggregated MIMO graph. Places P11
and P12 as well as transition T12 are kept from the original model, while
transition Tm4 represents transitions T2, T5, T8, and T10.

If there are neighboring MIMO elements of the same type in the aggregated
MIMO graph, an additional element of the opposite type has to be inserted.
Otherwise the resulting net would not be bipartite and thus not a proper
Petri net. If there is for instance a buffer connected to a MIMO-P element
(buffer1m, buffer3, buffer4, and buffer6 in the example), an additional
transition has to be inserted for each connecting arc (see Ta1, Ta2, Ta3, and
Ta4 in the example shown in Fig. 8.7). In the case of two directly connected
buffers, a transition–place–transition sequence is inserted instead.
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buffer2 buffer3

buffer6buffer5buffer4

buffer1

Ta1

P11 P12

Ta4Ta2

Ta3
Tm4

T12

Fig. 8.7. Resulting aggregated Petri net

The token flow of the submodel is preserved after aggregation. If, e.g., in a
marking, only buffer1 of both the original model and the aggregated one is
marked and buffer2 and buffer3 are not, the only possible final marking is
one in which buffer4 is marked while buffer5 and buffer6 are not. The same
holds for the other possible combinations of initial and final buffer markings
of the submodel.

8.2.4 Aggregation of vfSCPN Models

The aggregation of variable-free colored Petri net models is structurally the
same as for uncolored models, if every single transition mode is treated just
like an individual transition. Remember that vfSCPN models can be seen as
folded uncolored Petri nets. However, color information needs to be stored in
the MIMO graph as well. The main difference in the methods is that tran-
sitions of a vfSCPN are MIMO elements also when they change the color
of a token during firing, i.e., if the created token has a color different from
the input token. Figure 8.8 shows a very simple example of a vfSCPN model
aggregation.

The upper part of the figure shows a vfSCPN model example as introduced
in Sect. 6.5. Arcs are inscribed with token colors: take for instance the firing
of T1, which takes a token P.empty from place P1 and creates one with color
A.unpr in place P2.

The second graph in the figure shows the initial MIMO graph. T1 and T3
are MIMO elements because they “change the color of the tokens.” They can,
however, be merged during the aggregation step. The resulting aggregated
MIMO graph is shown as the third part of the figure. The final result of the
translation back into a vfSCPN model is depicted at the bottom. Only one
transition Tm represents the aggregated behavior, with input and output token
colors P.empty and A.first, respectively.
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Fig. 8.8. Example aggregation of a variable-free colored Petri net

8.3 Low-Level Systems and the Basic Skeleton

The subsystems SS i that resulted from the model partitioning as well as
their aggregated versions SS ∗

i are usually not analyzable in isolation. This
is a consequence of the freedom of where the model can be cut, which is
an important advantage with respect to other approximation methods. The
reason is that the model parts are not live any more when the remaining parts
are deleted.

Therefore a so-called low-level system LS i is constructed for every sub-
system SS i by adding the aggregated versions of all other subsystems to it.

LS i = SS i ∪
⋃

j �=i

SS∗
j

In addition to that, the interaction between the different submodels has
to be considered in the iterative approximation algorithm later on. The ba-
sic skeleton BS is used for this task, which represents a model in which all
subsystems are aggregated.

BS =
⋃

SS∗
i

The preservation of token paths during the individual aggregations ensures
that all low-level systems as well as the basic skeleton are life if the original
model is [112]. Example low-level systems and a basic skeleton are shown in
Sect. 16.3.1 for an application.

8.4 Iterative Throughput Approximation

The low-level systems LS i and the basic skeleton BS are used to iteratively
compute an approximation of the throughput TP(tk) for all output transitions
tk ∈ OT j of the subsystems SS j . Every transition with an output arc to a
buffer of the subsystem is considered as such an output transition.
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ApproximateEvaluation

Input: Low-level subsystems LS1 . . .LSn, Basic skeleton BS
Output: Transition throughputs
Requires: Evaluation algorithm Solve(model)

repeat
for k = 1 . . . n do

(∗ Compute throughput of all t ∈ OTk ∗)
Solve(LSk)
(∗ Adjust transition delays in the basic skeleton accordingly ∗)
repeat

Change transition delays ΛBS (t) for all t ∈ OTk

Solve(BS)
(∗ until all throughput values are equal ∗)

until ∀t ∈ OTk : TPBS (t) = TPLSk(t)
(∗ Adjust transitions in other low-level systems accordingly ∗)
for i = 1 . . . n do

for t ∈ OTk do
ΛLSi(t) = ΛBS (t)

until convergence: maxt∈T ΔTPLSk(t) < ε

Algorithm 8.1: Iterative approximate evaluation algorithm

During the execution of the algorithm, the service rates of the output
transitions (i.e., the inverse of their delay) are adjusted to achieve a balance
between the throughput values of all low-level systems and the basic skele-
ton. In the nonaggregated parts, the transition’s firing delays are not changed
from the original model. For all application examples investigated so far, the
final result was independent of the initial delay setting of the output transi-
tions of the aggregated model parts, and convergence was reached after a few
iterations only.

The method is shown in Algorithm 8.1. Informally, for each low-level sys-
tem LS i, the sojourn time for each token2 in the preset places of all output
transitions of the nonaggregated subsystem SS i is computed. The service rates
of the corresponding transitions of the basic skeleton BS are then changed such
that the sojourn times of the tokens are equal to the results for the low-level
system. This needs to be done in an internal iterative loop. The obtained ser-
vice rates of the output transitions t ∈ OT i are used to change the output
transition delays in all LS j , j �= i accordingly. After that the procedure is
started again with the next low-level system LS i+1 and so forth, beginning
with the first one again when necessary. The overall algorithm is repeated
until convergence is reached, i.e., the newly obtained delays do not change
more than a given threshold between two consecutive steps. The algorithm

2 In the case of a colored model, the different token colors are treated independently.
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calls an external performance evaluation algorithm Solve, for which, e.g., the
numerical analysis of Sect. 7.3.2 can be used.

The following notation is used in the algorithm: OT i is the set of output
transitions of low-level system LS i (and subsystem SS i). To differentiate be-
tween properties in the different models, superscripts are used that specify the
actual model. The delay of a transition t in the low-level system LS i is for in-
stance denoted by ΛLSi(t). The same applies to transition throughput results,
e.g., of a transition t in the basic skeleton, which is specified by TPBS (t).

The presented aggregation method observes the dynamic behavior of the
subsystems. There are neither structural nor dynamic restrictions for the de-
composition as opposed to methods known from the literature. Very large sys-
tems can thus be analyzed. Results for an application are shown in Sect. 16.3.2.



9

Efficient Simulation of SDES Models

Standard simulation methods like the ones described in Sect. 7.2 work well for
many practical applications. There are, however, numerous cases in which the
required computational effort is very high, or may even inhibit a quantitative
evaluation at all. The reason is that, independent of the model or simulation
environment, there is a certain number of significant events or time intervals
(samples) for which intermediate results have to be generated for a specified
accuracy of the performance measures.

The basic speed of a simulation algorithm, e.g., measured in executed
events per second, cannot be decreased easily: code optimization should be
done in any case, and otherwise only a faster processor may help. Although it
depends on the complexity model class as well, a transformation of a model
into a different model class will change the number of required model elements
accordingly. The use of parallel or distributed computing hardware has the po-
tential to reduce computation time (but not effort). Section 9.1 briefly covers
characteristic approaches and introduces an optimistic distributed simulation
method for SDES models aiming at an automatic load balancing. Fine-grained
model partitioning as well as a specific logical simulation time are proposed.

On the other hand, it is possible to investigate the statistical methods used
for result estimation. The number of samples (significant events) to be gen-
erated may be very high with the applied estimation method. This is usually
the case if the intermediate values have a high variance, or if the desired result
quality (confidence interval, error probability) is very strict. The efficiency of
an estimator informally states the computational effort required to achieve
a certain accuracy, e.g., its mean square error. Variance reduction techniques
aim at an efficiency improvement, and thus may obtain a more accurate result
from the same number of samples. Well-known methods include common ran-
dom numbers, antithetic variates, or control variables. Results are especially
hard to estimate when only a few samples can be drawn from a large number
of events.
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This problem is well known under the term rare event simulation, and one
method is described in the SDES setting in Sect. 9.2. The chapter ends with
some notes on previous work and background.

9.1 Distributed Simulation of SDES Models

A popular approach to speedup a simulation experiment is the use of multiple
processing nodes. While the overall computation effort usually increases due
to organizational overhead, the waiting time reduces until statistically signif-
icant results are obtained. There are two general approaches to utilizing a set
of processors. In the first one, a standard simulation algorithm with a copy
of the whole model runs on each node and sends intermediate results to a
central master process who collects and analyzes the results. This approach
is called independent replications, and is for instance implemented for SPN
models in the TimeNET software tool [197]. It is technically much simpler
than the second approach, but the scalability is bounded by the centralized
architecture.

The second approach divides the model into parts, which are simulated
by communicating logical processes lpi ∈ LP . Discrete event system models
reflect the locality of real-world applications in that dependencies as well as
the effect of executions primarily affect “neighboring” state variables. If we
think of larger systems to be simulated, which are becoming ever more com-
plex and assembled from individual modules, the second approach of logical
process simulation is a natural choice. There are even settings in which a joint
simulation of the whole model is practically impossible: if a technical system
is designed by cooperating companies, and its behavior should be simulated
without giving away the company’s knowledge, or there are different coupled
simulation engines for the model parts that run on individual hardware.1 Mod-
ern grid or cluster environments provide the necessary environment. Another
possibility is a true parallel simulation on a SIMD-operated multiprocessor,
which we do not consider here further.

Just like in a standard sequential simulation, discrete event occurrences
are observed in each logical process lp over a virtual simulation timescale.
An event list is managed with events scheduled in the future, ordered by
their occurrence time. There has to be some kind of synchronization be-
tween the logical processes that simulate parts of the model to notify oth-
ers about events. The communication overhead is obviously smaller if we can
find a way to separate the model such that most of the events have local
effects in one logical process only. Many real-life examples are characterized
by partly autonomous entities that cooperate or compete from time to time.
This parallelism is inherent to the real-world and is reflected in SDES mod-
els. For its exploitation, a partitioning is required, as well as an adaptation

1 Simulators in such an environment are called federates in the high-level architec-
ture [76] framework for simulation integrating and interoperability.
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of standard logical process simulation algorithms to the requirements of our
abstract model class. There are different ways of synchronization possible.

A distributed simulation has no centralized control to synchronize the
different logical processes. Synchronization is realized by exchanging messages
between the nodes; a fast communication subsystem is thus important for
the efficient execution. The underlying idea is that enabling of actions and
event execution is often locally done in SDES models. Many events occur thus
at different times, but do not affect each other. A parallel or synchronously
distributed simulation would have to wait for the event executions in their time
ordering due to the use of a global simulation clock. Independent execution
of concurrent events is possible in an asynchronously distributed simulation,
and leads to a significant speedup [103].

Distribution at the event level divides a global simulation task such that
each logical process simulates a part of the global model. The model (state
variables and actions) is partitioned into a set of regions that are associated to
each process. Internal events do not affect state variables of other processes,
while external events may do so. Nonlocal dependencies and results of events
need to be propagated to the corresponding processes. Messages for state vari-
able changes (remote events) and other notifications for management issues
are exchanged via a communication system. The main problem to be solved
is to guarantee causal correctness of a distributed simulation run.

A distributed simulation is obviously said to be correct with respect to the
local event processing if the partial event ordering created by it is consistent
with the total event order of a sequential simulation. This leads to the question
which notion of time is necessary to achieve such an ordering. The logical clock
problem [218] aims at generating clock values in a distributed system in a way
that all events are ordered in a logical time. It was shown in [183] that this
is the inverse of the problem in a distributed simulation run. Causality errors
are impossible if all LP execute the events ordered by their time stamps. This
is called the local causality constraint [114] and has been shown in [244].

There are several ways to ensure that this constraint is not violated. Con-
servative distributed simulation schemes guarantee causality from their algo-
rithm and message exchange protocol. Each logical process blocks until it is
safe to proceed, i.e., there will be no incoming messages with time stamps
smaller than the local clock value. This method is commonly named CMB
protocol due to the works of Chandy and Misra [43] and Bryant [33]. Inher-
ent problems are deadlocks and memory overflows, and the performance is
hampered by having to wait for other processes to catch up.

If a model has only a few events that require messages to be exchanged be-
tween logical processes, it is safe in most cases to proceed inside such a process.
The idea of optimistic logical process simulation or Time Warp [183,184] is
to temporarily accept the possibility of local causality violations. A violation
occurs if a logical process receives a message from another one, notifying it
about a past remote event execution which affected the local state of the pro-
cess. Such a message is called a straggler message, and the causality violation
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is overcome by a rollback of the logical process to the time before the time
stamp of the remote event, i.e., a state which is consistent with the received
message. This obviously wastes some computation time, and the algorithm
requires detailed bookkeeping of the local past (visited states and executed
events), because it may be necessary to jump back in the logical time.

Logical processes communicate by exchanging positive messages to notify
possibly affected processes about event executions, and negative messages that
take back prior messages because the time window in which they were gener-
ated was invalidated by a rollback. All messages are time stamped. Messages
with external events that are still in the future of a local simulation are sim-
ply inserted into the local event list, ordered by the time stamp and executed
when the local time advanced sufficiently. Possible problems of Time Warp
implementations include unnecessary or cascading rollbacks and “overopti-
mistic” processes that increase their local simulation times too fast, producing
numerous rollbacks. Possible solutions have been proposed with lazy cancella-
tion and lazy reevaluation as well as optimistic time windows. Another issue
is the amount of memory required for the bookkeeping, which can be reduced
from time to time by a fossil collection. The amount of messages exchanged
between logical processes is often the most significant performance bottleneck.
Adaptive protocols have been described in the literature which set a “level of
optimism” during the simulation run for a good tradeoff between conservative
and optimistic approaches. An overview can, e.g., be found in [103,114].

A distributed simulation of SDES models requires time stamps for events
that allow their unique and correct ordering. With the existing approaches it
is, however, impossible to order events that are due to immediate action exe-
cutions (with zero delay), or have priorities. Standard distributed simulations
require a model to be decomposed into regions of logical processes in a way
that there are no zero delay events to be sent, i.e., only at timed actions. It is
then (practically) impossible that two events are scheduled for the same time.
Our goal is, however, to improve overall performance by an automatic load
balancing, which obviously can reach a better partitioning when there is no
such restriction.

Global enabling functions (guards) and condition functions (capacities)
are impossible without global state access, which in turn requires a complete
ordering between all event times in a distributed simulation. Standard simu-
lation times lack this feature and thus cannot be used.

We propose a new logical time scheme for SDES models that allows much
better partitioning with less structural restrictions than, e.g., the approaches
covered in [252]. Section 9.1.1 introduces a fine-grained model partitioning and
distribution that overcomes the static association of model parts to logical
processes. We show that the known logical times are not sufficient for our
purposes. A compound simulation time for SDES models including immediate
actions, priorities, and global functions is presented in Sect. 9.1.2. It allows to
detect confusions in the model as a byproduct. Section 9.1.3 proves some
properties of the time scheme. Algorithms for a distributed SDES simulation
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with the proposed techniques are shown in Sect. 9.1.4. Some notes on related
issues are given in at the end of the chapter.

9.1.1 Fine-Grained Model Partitioning
for Dynamic Load Balancing

A fine-grained partitioning of an SDES model has the advantage of almost ar-
bitrary associations of model parts to computing nodes. It is a prerequisite for
dynamic load balancing. The reason for this is that model parts would have
to be separated and sent to another node, while it is unclear how the state
and event lists would have to be updated in such a case. With a more fine-
grained partitioning, there are obviously more messages to be passed among
model parts; this disadvantage can, however, be simply overcome technically
by avoiding communication messages between processes on one host. An ad-
ditional advantage is the locality of rollbacks, which affect smaller portions
if done in a more fine-grained fashion. Moreover, it is often impossible to
obtain a good partitioning from the model structure. Our approach allows
to achieve a good balance with simple heuristics starting from an arbitrary
initial mapping to nodes. Less memory is consumed in the state lists be-
cause model parts that create few events need to store their local states only
rarely.

Different to standard time-warp simulations, we propose to run one log-
ical process per host, which manages several atomic units that are running
quasiparallel in that machine. An atomic unit is responsible for the optimistic
simulation of a smallest possible model part, and is created as shown be-
low. Each atomic unit has its own local simulation time, event, and state
list. This makes it possible to migrate it during runtime without touching
other atomic units. An atomic unit can restore its local state accurately for
a given simulation time, and send rollback messages to other atomic units
that might be affected. Rollbacks are thus more precise, and unnecessary
ones are avoided or canceled whenever possible. The way of scheduling the
operations of atomic units inside a logical process avoids causality viola-
tions between them, reducing the number of rollbacks further. Each logical
process offers a message interface to each of its atomic units, which either
exchanges the information internally to another local unit or sends them
over the communication network to another node. Logical processes do not
share memory and operate asynchronously in parallel, e.g., on a cluster of
workstations.

Formally we denote by lp one logical process that runs on its comput-
ing node; there is a one-to-one mapping between available nodes and logical
processes. The set of all logical processes is called LP .

Likewise, we denote by au one atomic unit and by AU the set of all of
them.

AU = {au1, au2, . . . , au |AU |}
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Atomic units are distributed over the available computing nodes in an
actual setting. This means a mapping of each atomic unit to a logical process
lp, which we denote by the node-distribution function Node.

Node : AU → LP

We write for simplicity AU lp to denote the set of atomic units that are mapped
to the logical process lp.

AU lp = {au ∈ AU | Node(au) = lp}

The mapping of atomic units to logical processes is a key factor for the
reachable speedup of a distributed simulation. Unlike other partitioning al-
gorithms, which detect model parts that should go into one logical process
and add them until there are as many model parts as logical processes, we
go a different way. The smallest model parts that must be simulated to-
gether are obtained, but kept in atomic units individually. The mapping of
atomic units to logical processes may be done with a simple heuristic ini-
tially, which may for instance exploit the relations defined below for connec-
tions between model parts. The goal of the proposed approach is, however, a
framework in which a (near-)optimal mapping develops automatically during
runtime.

Obviously should hold AU lp �= ∅ for all logical processes, at least as long as
|au| ≥ |LP |. However, the user could, in the extreme case, associate all atomic
units to one logical process initially, and then let the mapping improve during
the simulation by automatic migration.

An SDES model then has to be partitioned to form atomic units. The model
part captured in one atomic unit aui, the region, is denoted by Region(aui).
It is a subset of the actions and state variables of an SDES model.

Region : AU → SV � ∪ A�

The main objective during the partitioning into model regions is to keep
them small and to have only the minimal number of model elements in them.
Communication effort might, however, become higher of the regions that are
too small. Conflicts between action executions need to be solved inside an
atomic unit, as it has been shown for Petri nets in [56]. Thus at least a set
of input state variables of each SDES action should reside in the same atomic
unit as the action itself.

For restricted model classes, it is possible to formally derive the sets of
actions that may result in a conflict [53]. Such a set is called an extended
conflict set (ECS), and has been explained in the context of simple Petri nets
on page 84 as well as standard performance evaluation algorithms on page 133
already. A resulting partitioning was proposed in [50].

In the following, we assume for simplicity that there are only conflicts
between actions that share state variables as their input. This disregards pos-
sible conflicts that may occur due to the change of common state variables
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which have a nontrivial condition function (such as a common output place
with a capacity restriction), and conflicts due to the change of state variables
which influence an enabling function (like a state-dependent guard).

It should, however, be noted that all these considerations only affect the
execution order of activities which are scheduled at the same time. Priorities
can be used by the modeler to explicitly specify a preference. This topic has
been extensively studied for Petri nets in the literature [303], to which the
interested reader is referred. For the “simpler” model classes such as automata
and queuing networks, it is a less important issue, because conflicts can be
easily found from the model structure there.

We require the SDES model to be confusion-free, as it is discussed in
more detail in Sect. 9.1.2. Confusion is interpreted as a modeling error, and
can be detected during runtime with the methods introduced in the follow-
ing. Another restriction is the absence of vanishing loops, as it has been
mentioned in Sect. 7.1. We slightly restrict immediate paths requiring that
an ECS containing only immediate actions must not be visited more than
once in one immediate path. This restriction is, however, of little practical
significance.

Coming back to the partitioning, we are interested in a set of input state
variables SV �

input(a) ⊆ SV � of each SDES action a ∈ A�. Due to the gen-
eral definition of the SDES model class, it is not possible to obtain this
set from it directly. For a given model class,2 it is, however, easy to do as
Table 9.1 shows. Input places are for instance obvious candidates in Petri net
classes.

Due to the dependence of action enabling and execution as well as conflict
resolution on the input state variables, all actions that share some of these
variables need to be associated to the same region. Otherwise the probabilis-
tic choice between conflicting actions would require communication, and a
distributed random choice would introduce significant overhead.

Table 9.1. Input state variables of actions from individual model classes

Model class ∀a ∈ A� : SV �
input(a) =

QN

⎧
⎪⎨

⎪⎩

∅ if a ∈ Arr

{ea ∈ E} if a ∈ Trans

{qa ∈ Q} otherwise

SPN {p ∈ P : ∃m ∈ M, Pre(p, a,m) = 0}
SCPN {p ∈ P : Pre(p, a) = ∅}
vfSCPN {p ∈ P : ∃β ∈ β∗(a),Pre(p, a)(β) = ∅}

2 Automata are not considered here, because for them a distributed simulation
would make no sense due to one single state variable.
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Two model elements (state variables sv ∈ SV � and actions a ∈ A�) are
connected in the sense that they should be situated in the same region if the
following relation � holds for them.

∀x, y ∈ (A� ∪ SV �) : x � y ⇐⇒
x = y ∨ x ∈ SV �

input(y) ∨ y ∈ SV �
input(x)

Obviously � is reflexive and symmetric. Now denote by � the transitive
closure over �

∀x, y ∈ (A� ∪ SV �) : x � y ⇐⇒ ∃z ∈ (A� ∪ SV �) : x � z ∧ z � y

� is then an equivalence relation, and thus defines a partition of state vari-
ables and actions. Each of the obtained equivalence classes forms the region
Region(au) of an atomic unit. The set of all atomic units AU is thus given by
the quotient set of (A� ∪ SV �) by �.3

Then every part of a model is contained in exactly one region of an atomic
unit, such that nothing is omitted and there are no double associations.

∀au i, auj ∈ AU : aui �= auj −→ Region(au i) ∩ Region(auj) = ∅
∧

⋃

aui∈AU

Region(au i) = SV � ∪ A�

Some additional relations between actions, state variables, and atomic
units are now introduced, which are used in the algorithms later on.

The set of state variables that possibly changes its value due to an ac-
tion execution is for instance necessary for message generation. We denote by
SV �

affected(a) the set of state variables that may be affected by the execution
of (a variant of) an action a.

SV �
affected : A� → 2SV �

In theory, a state variable sv is included in the set for an action a under the
following condition. Assume that there are two states σ and σ′ in the set of
reachable states RS of the model, and σ′ is directly reached by executing (a, ·)
in σ. If the value of sv is changed by this execution, it is affected by the action.

SV �
affected(a) = {sv ∈ SV � | ∃σ, σ′ ∈ RS , σ

(a,·)−→σ′ ∧ σ(sv ) �= σ(sv)′}

This definition is, however, futile for an actual algorithm. The sets can be
obtained much easier for each model class individually. Table 9.2 lists the
results for the model classes used in this text.

3 To avoid atomic units “running away” with their local simulation times, and
thus unnecessary rollbacks, actions without input state variables are put into an
atomic unit that contains another state variable which is closely connected to it
in practice.
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Table 9.2. Affected state variables of actions

Model class ∀a ∈ A� : SV �
affected (a) =

QN

⎧
⎪⎨

⎪⎩

{qa ∈ Q} if a ∈ Arr

{ei ∈ E, qj ∈ Q} if a = (qi, qj) ∈ Trans

{ea ∈ E, qa ∈ Q} if a ∈ Q

SPN {p ∈ P : ∃m ∈ M,Pre(p, a,m) = Post(p, a,m)}
SCPN {p ∈ P : ∃β ∈ β∗(a),Pre(t, p)β = Post(t, p)β}
vfSCPN {p ∈ P : ∃β ∈ β∗(a),Pre(t, p)(β) = Post(t, p)(β)}

Table 9.3. Additionally required state variables of actions

Model class ∀a ∈ A� : SV �
required (a) = SV �

affected (a)∪
SPN {p ∈ P : ∃m ∈ M, Inh(p, a,m) > 0}
CPN, vfSCPN {p ∈ P : p ∈ G(a)}

Actions access not only the state variables that belong to their local region,
because for instance their execution may change the value of a remote variable.
The set of state variables of the SDES model that are eventually accessed by
an action a is denoted by SV �

required(a) and defined as follows. At least the
state variables that are affected by its execution are required for the action.
Thus it holds

∀a ∈ A� : SV �
required(a) ⊇ SV �

affected(a)

Table 9.3 shows state variables which are required for read-only access in
addition to the affected ones for individual model classes. For the other model
classes that are considered in this text, ∀a ∈ A� : SV �

required(a) = SV �
affected(a)

holds, and thus there is no need to define SV �
required(·) specifically.

For simplicity of notation, we write p ∈ G(·) in Table 9.3, thus interpreting
the guard function of a transition from a colored Petri net as an expression
that depends on places.

Using the sets of required state variables for actions, we can now define the
set of state variables that need to be known in an atomic unit au . We call this
set local state variables and denote it by SV �

local(au). It contains the state
variables of the region as well as the ones needed in any of the expressions
attached to model objects in the region. Thus obviously every state variable
is local to at least one atomic unit, if the model is connected.

SV �
local(au) =

⋃

a∈Region(au)∩A�

SV �
required(a)

We informally refer to state variables that are locally known in an atomic
unit, but do not belong to its region, as mirrored state variables.
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A local state σau of an atomic unit au associates a value to each of the
local state variables. The set of all theoretically possible local states is denoted
by Σau and obtained by taking the crossproduct over the sets of allowed values
for each local state variable.

Σau =
∏

sv∈SV �
local

(au)

S�(sv) and σau ∈ Σau

A remote atomic unit au needs to be informed about the execution of an
event a (i.e., au may be affected by action a), if at least one of the state
variables possibly changed by the execution of a is locally known in au. We
thus define the set of remote atomic units that is affected by an action
accordingly.

∀a ∈ A� : AUaffected(a) =
{
au ∈ AU | a /∈ Region(au) ∧ SV �

affected(a) ∩ SV �
local(au) �= ∅

}

9.1.2 A Logical Time Scheme for SDES Models
with Immediate Actions and Priorities

In this section, a new logical time for SDES models is presented. It has been
mentioned in the introduction already that existing time schemes for dis-
tributed simulations are not sufficient for this class of models, because the
ordering of events is not ensured by a simple global clock in the presence
of immediate actions and priorities. We will cover this in more detail in the
following. Moreover, performance measures and conditions with global depen-
dencies would otherwise not be possible (see below).

Causal correctness of a distributed simulation algorithm for SDES models
is guaranteed if the events are processed in the same sequence that a sequen-
tial method would follow. A sequential simulation would process events in
the order given by the simulation time ST , remaining delays, and by taking
priorities of events into account which are scheduled for the same time (see
Sect. 7.2). In the case of an optimistic approach like the one used here, possi-
ble violations of this rule are accepted temporarily, which are taken back by a
rollback if the assumptions turn out to be wrong later on. Following [114,244],
every atomic unit must execute events in a nondecreasing time stamp order.
However, time stamps must allow a complete ordering and capture all of the
problematic issues mentioned before. This section introduces a new compound
simulation time cst , which fulfills the requirements for SDES models. The in-
sufficiency of existing time schemes for distributed SDES simulation is shown
first.

A global simulation clock alone is not sufficient, because there are actions
with zero delay to be executed at the same simulation time, and there is
a nonzero probability that several timed actions are scheduled at the same
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time as well.4 Action priorities Pri�(a) specify the order of execution in our
definition of the dynamic behavior (cf. Sect. 2.3.2). Events to be executed
at the same simulation time must be uniquely ordered at every atomic unit
where their ordering matters. Priorities and causal relations between these
events must be taken into account for such a decision. The question is how
to manage priorities and causal dependencies in a distributed manner. There
are some approaches available for causal ordering, which are briefly discussed
in the following.

Lamport’s algorithm [218] allows a time ordering among events [333].
A single number is associated to every event as its logical time, and increases
with subsequent events. However, a mapping from Lamport time to real (sim-
ulation) time is not possible. In a simulation we, however, do need the actual
simulation time ST , e.g., to compute performance measures. Lamport time
is furthermore not sufficient to detect causal relationships between events,
which is a prerequisite for models with action priorities. It is impossible to
sort concurrent and independently executed events whose occurrence is based
on a different priority. Lamport time would impose an artificial ordering and
neglect the priorities. Moreover, it is forbidden for neighboring regions of a
distributed model to exchange events that have a zero delay. In a colored Petri
net, this would prevent models to be decomposed at immediate transitions,
and thus restrict the formation of atomic units significantly.

A logical time that characterizes causality and thus overcomes some of
the mentioned problems of Lamport time is vector time (or vector clocks)
proposed by Mattern [235], Fidge [104], and others independently in different
contexts. In our proposed setting, a vector time VT value is a vector of natural
numbers, which contains one entry for every atomic unit.

VT : AU → N or VT ∈ N
|AU |

Whenever an atomic unit executes an event or rollback, it increases the vector
time entry of itself by one. The local entry of the VT vector thus always
increases, even when a rollback is processed. The elementwise maximum is
taken for every nonlocal entry of VT to update the local time, whenever a
remote event is processed.

The informal meaning of every VT entry in an atomic unit is thus the local
knowledge about the number of previously executed events, given for every
atomic unit individually. Events are understood here including local action
executions, execution of remote messages, and rollbacks. Vector time entries
may therefore be interpreted as a version number of the atomic units’ inner
states. It can be used to check for causal dependency between two events.
A higher-valued entry of an event denotes a causally “later” execution.

Vector time is a notion of causality and can thus be used to differ between
events that depend on each other. The possible relations between vector times

4 The general issue of simultaneous events in simulations and some solution meth-
ods are covered in [326].
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are thus important. If event e2 is causally dependent on e1, it must naturally
be scheduled after it. In that case we write VT 1 < VT 2.

∀VT 1,VT 2 ∈ N
|AU | : VT 1 < VT 2 ⇐⇒ ∀au ∈ AU : VT 1(au) ≤ VT 2(au)

VT 1 = VT 2 ⇐⇒ ∀au ∈ AU : VT 1(au) = VT 2(au)

The case of all elements of two vector times being equal occurs only if two
events are compared that result from actually conflicting actions in one atomic
unit. Their execution sequence is then decided based on a probabilistic choice.
This can, however, only happen inside one atomic unit and for events that
are in the future of the local simulation time. It will never happen in the
distributed simulation algorithm shown below that a remote event has the
same vector time as any other locally known one, because the same event is
only sent once to another atomic unit. In algorithms where this cannot be
guaranteed, all equally timed events must be executed together in one step.

Unfortunately it is not the case in models with asynchronous events that
every pair of events can be uniquely ordered by their vector time. Two events
e1 and e2 are said to be concurrent with respect to their vector times, if there
is no causal dependency found. This case is denoted by VT 1 ‖ VT 2.

∀VT 1,VT 2 ∈ N
|AU | : VT 1 ‖ VT 2 ⇐⇒ (VT 1 ≮ VT 2) ∧ (VT 2 ≮ VT 1)

Vector time thus allows to detect direct and indirect dependencies by com-
paring VT values of events. It is possible to differ between causally dependent
and truly concurrent activities.

Vector time is, however, still not sufficient for models with priorities and
immediate delays. Different Petri net classes as for instance defined in Chaps. 5
and 6 allow immediate transitions with priorities. Two or more events can thus
be scheduled for execution at the same (simulation) time, but the one with
a higher priority must always be executed first. It may disable events with
lower priorities by doing so.

A small Petri net example is shown in Fig. 9.1. Priorities of transitions
are annotated in italics.5 The correct sequence of events would be the firing
of transitions T1, T3, T2, and then T4 or T5, depending on the probabilistic
solution of the conflict between them.

In a distributed simulation of the model as proposed here, transitions
and places are associated to atomic units au1 . . . au4 as shown. There is no
guarantee that the concurrently running atomic units process events in the
mentioned order, at least if they are located on different nodes and thus in
different logical processes. It might thus be that T2 fires after the firing of
transition T1, and the associated event is received and processed in au4. T4
then fires locally, which is not correct. This is detected later on, when T3
has fired and the corresponding event is received in au4. The events of firing
transitions T2 and T3 must be ordered correctly in au4. Otherwise it cannot

5 Remember that timed Petri net transitions always have a priority of zero.
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Fig. 9.1. Simple Petri net example with immediate transition priorities

be detected that T3 had to fire before T2 and that the previous local firing of
T4 must be rolled back.

An ordering of events T2 and T3 in au4 is, however, impossible based on
the simulation times ST T2 and ST T3 (which are equal) or the vector times of
the events. The latter are VT T2 = (1, 1, 0, 0) for T2 and VT T3 = (1, 0, 1, 0) for
T3. They are concurrent following the definition (VT T2 ‖ VT T3), and there
is thus no hint on how to order them based on vector time. The priorities
obviously need to be taken into account, which is shown in the following
proposed extension of logical vector time.

The two logical time approaches described above guarantee a causally cor-
rect execution of events. However, vector time only ensures that the followed
sequence of event executions is a causally possible one. Causally independent
events may happen in any order [235]. This is fine as long as a truly distributed
system without inherent synchronization is simulated. In a distributed simu-
lation that is used for a performance evaluation, and where global states are
important for the decision of enabling functions and performance measures,
the “real” simulation time has to be used. Our model in fact has an underlying
global synchronization, which is given by natural time. The stochastic delays
that are chosen in an atomic unit for an event execution must be obeyed every-
where. The simulation clock, measured in model time units, therefore has to
be incorporated in a time scheme for SDES. Otherwise there would be events
that are simultaneous from the vector time standpoint (i.e., VT (·) ‖ VT (·)),
although there is a valid precedence relation based on the execution times.
Simultaneous execution in our quantitative SDES models means at the same
time. Vector time is thus added to the simulation time to cover causal depen-
dencies, and extended by a priority vector as described below.

Immediate Execution Paths and the Priority Vector

We have seen so far that a new time scheme is necessary for actions with
priorities, which are specified by Pri�(a). In a standard sequential simula-
tion, only one global event queue is maintained, which contains the scheduled
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events of the whole model. It is then easily possible to detect events that are
scheduled for the same time and to resolve their execution sequence in the
order of the priorities (cf. Sect. 7.2.1). This is not the case in a distributed
simulation, where every atomic unit manages the events of the local actions
and is informed by messages about events in the neighborhood. A global de-
tection of events that are scheduled for the same time as well as a centralized
serialization is thus impossible.

However, priorities (especially of actions with a zero delay) play a signifi-
cant role in many subclasses of SDES. Event serialization may only take place
when different events are sorted with respect to their logical times in atomic
units that process them. Thus the decision about which event has (or had) to
be executed first must be taken in a distributed way, i.e., in each atomic unit
that receives and sorts events by their time. A global probabilistic solution
of conflicts between events is thus impossible. Therefore we required to have
all actions that possibly conflict with each other to be put into one atomic
unit (see Sect. 9.1.1). In the case of a Petri net, all transitions belonging to an
ECS [53] are thus associated to one atomic unit.

The main reason for a new logical time is to decide the exact ordering of
all incoming and local events in an atomic unit. Let us assume different paths
of subsequent executions of immediate actions that lead to an event reception
in an atomic unit, while a local immediate action is scheduled for execution
at the same simulation time ST . Which event should be executed first, i.e.,
what ordering is necessary in the local event list? Obviously the priority must
be taken into account, as shown earlier with the example in Fig. 9.1.

One might be tempted to think that the logical time of each event only
needs to be extended by one priority value. This value then should store the
minimum priority of all events on the path, because an event with a lower
minimum priority in the execution path will always be executed last.

Figure 9.2 shows an example Petri net, which is partitioned into eight
regions associated to atomic units au1 . . . au8. It has been constructed to ana-
lyze the immediate event executions after the firing of the timed transition T1.
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T3 T5

2

T6

4

T4

T2P2T1

au7

P8

T7

5

T8

3 2 6
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P3 P5 P7
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Fig. 9.2. An example for transition priorities
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Transition priorities are again depicted in italics and we denote events by the
names of firing transitions.6 The correct firing sequence is T1, T2, T4, and T3,
a random selection in au5 which we assume leads to T6, T8, T5, and T7.

Assume that transitions T1, T2, T3, and T4 have fired. Associated events
T3 and T4 arrive in atomic unit au5, in which they have to be ordered. Vector
times cannot be used for this, because obviously VT T3 ‖ VT T4 due to the
concurrent executions in au3 and au4. If we would store only one priority (the
minimum of immediate transitions on the execution path), it would be 1 for
both events, because T2 with priority one is part of both paths. Thus it is not
sufficient to store just the minimum priority on the path of an event.

We introduce a priority vector as a supplement to the logical vector time
to sort events correctly. A priority vector PV maps each atomic unit au to a
natural number.

PV : AU → N or PV = N
|AU |

This number stores the minimum priority of any event belonging to au, which
has been executed in the current path of events that immediately followed each
other. Events within the same atomic unit are ordered locally, and there is thus
no need to store further information for them individually. Moreover, every
atomic unit is visited at most once during one immediate path as required
above, and thus there is no ambiguity in the meaning of the associated entry
in the PV vector.

It should be noted that only paths of event executions between two tangible
states are significant in this case, because otherwise the simple simulation time
ST is sufficient for the ordering. Such a path of immediate state transitions
starts with the execution of an action with nonzero delay (like transition T1
in Fig. 9.2), and ends again in a state in which some simulation time passes.7

It should be noted that the execution of the starting timed event does, how-
ever, belong to the path itself, because the postpriorities defined in SDES
models also apply to timed events that are scheduled for the same instant of
simulation time. The event ordering technique described in the following is
then also applicable for this case.

All event executions of one path must be considered in the priority vector,
because every single one can influence the correct sequence. If two events are
compared, the one with the smaller minimum priority entry must be ordered
last. This is because the event with the lowest priority delays the propagation
of an event until no other action with a higher priority on other paths can
be executed. Entries are initialized with infinity as a neutral value of the
minimum, and are again set to infinity when some simulation time ST passes
(i.e., in a tangible state, cf. Sect. 7.1).

6 Which is unambiguous here because there is only one action mode per transition
in a simple Petri net.

7 It is thus similar to the immediate paths for which an accumulated path prob-
ability is defined on page 132 in the context of the reduced reachability graph
computation.
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When an immediate action (variant) becomes executable in a local state,
it is scheduled with a logical time in which vector time and priority vector
are copied from the current local logical time. The priority vector entry cor-
responding to the local atomic unit is set to the global event priority of the
scheduled action. This scheduled time is used to sort a new event into the
local event list.

When an event is executed in an atomic unit, the local simulation time is
advanced to a new value. The local priority vector of the atomic unit is then
updated such that the entry related to the atomic unit of the event (it could
be a remote or local action) becomes the minimum of the previous value and
the entry in the event’s priority. The remaining entries are not changed. All
entries are set to the default value infinity if some time passed between the
previous simulation time and the event execution. The only exception is the
entry corresponding to the executed timed event, which is set to its priority.

Formal definitions of the logical time for an event that is scheduled for
execution as well as the new local time after the processing of an event are
given on page 188.

Table 9.4 shows vector times and priority vector values for the transition-
related events in the example introduced in Fig. 9.2. The values are depicted
for the events after their generation. Local vector time and priority vector
are of course updated in each atomic unit upon later execution of a received
remote event. This is the reason for the entries increasing by 2.

Assume that we start a distributed simulation of the model shown in
Fig. 9.2 with the firing of transition T1. Vector time entries of all atomic
units are thus zero at the beginning of the simulation. The entry of au1 is
set to 1 and the priority vector entry to 0 with the firing of T1. The associ-
ated event is sent to the affected atomic unit au2. In the following we assume
for simplicity that the events are executed in the right order; in reality this is
achieved by rollbacks if necessary. The following happens in au2: event T1 is re-
ceived, local logical time is updated to VT au2 = (1, 1, 0, 0, 0, 0, 0, 0),PV au2 =
(0,∞,∞,∞,∞,∞,∞). Firing of transition T2 is scheduled as the only entry

Table 9.4. Vector time and priority vector of events from Fig. 9.2

Event Vector time VT Priority vector PV

T1 (1, 0, 0, 0, 0, 0, 0, 0) (0,∞,∞,∞,∞,∞,∞,∞)
T2 (1, 2, 0, 0, 0, 0, 0, 0) (0, 1 ,∞,∞,∞,∞,∞,∞)
T3 (1, 2, 2, 0, 0, 0, 0, 0) (0, 1 , 3 ,∞,∞,∞,∞,∞)
T4 (1, 2, 0, 2, 0, 0, 0, 0) (0, 1 ,∞, 4 ,∞,∞,∞,∞)
T5 (1, 2, 2, 2, 4, 0, 0, 0) (0, 1 , 3 , 4 , 2 ,∞,∞,∞)
T6 (1, 2, 2, 2, 3, 0, 0, 0) (0, 1 , 3 , 4 , 2 ,∞,∞,∞)
T7 (1, 2, 2, 2, 4, 2, 0, 0) (0, 1 , 3 , 4 , 2 , 6 ,∞,∞)
T8 (1, 2, 2, 2, 3, 0, 2, 0) (0, 1 , 3 , 4 , 2 ,∞, 5 ,∞)
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in the local event list. It is executed and produces an event T2 that is sent to
au3 and au4 with the new local time shown in Table 9.4.

The remote event T2 is received and executed in atomic unit au4, which
enables transition T4. The local time is updated, T4 is scheduled and executed
locally. The associated event T4 is sent to au5 with the logical time shown in
the table. The same happens in au3: T3 becomes enabled after the execution
of the remote event T2 is scheduled and executed, and an associated event T3
is sent to au5 with the logical time shown in Table 9.4 for T3.

The algorithm in atomic unit au5 must be able to decide which one of
the received events T3 and T4 has to be executed first, i.e., sorted into the
local event list before the other one.8 The two vector times are not sufficient,
because VT T3 ‖ VT T4 due to the concurrent executions in au3 and au4.

The priority vectors are thus used to compare the logical times of the
events. However, it is obviously not adequate to compare the minimal pri-
ority vector entry. It would be zero both for T3 and T4 due to the shared
event T1 on their paths. This priority must not be taken into account (as
well as the priority of T2), because it belongs to an identical event on that
both T3 and T4 are causally dependent. Both paths share a common initial
sequence of atomic units. Cases like this can, however, be detected easily
using the vector time of the events. Equal entries in the two vector times
denote identical dependencies, which then have to be ignored in the com-
parison of the priority vectors. Priority vectors are thus compared using the
minimum priority entry only for atomic units which have distinct vector time
entries.

We thus define a minimal path priority of a priority vector PV a to which
a vector time VT a belongs, with respect to another vector time VT b as

PV a,b
min =

⎧
⎨

⎩

min ∀au∈AU :
VTa(au) �=VTb(au)

PV (au) if VTa �= VT b

∞ otherwise
(9.1)

Note that we define this path priority to be infinity for completeness in the
case of identical vector times; this case is, however, only of theoretical interest.

Applied to our examples of T3 and T4, we obtain

PV T3,T4
min = 3 and PV T4,T3

min = 4

Significant entries in Table 9.4 are underlined. The minimal path priority of
T3 is smaller, and thus T4 is correctly executed first. The execution of T4
already enables transition T6 but not T5 in au5. The local time is updated to
VT au5 = (1, 2, 0, 2, 1, 0, 0, 0),PV au5 = (0, 1,∞, 4,∞,∞,∞,∞). T6 is sched-
uled for execution at time VT = (1, 2, 0, 2, 1, 0, 0, 0), (0, 1,∞, 4, 2,∞,∞,∞).

8 In addition to that, transition T5 might become enabled if event T3 is received
and executed first. The algorithm thus has to be able to decide about the ordering
of event T5 with respect to T3 and T4 as well. This case is handled below.
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The algorithm managing au5 must then decide whether remote event T3 or
local event T6 is executed first. Using the formula above, we obtain

PV T3,T6
min = 3 and PV T6,T3

min = 2

The significant entries of T6’s vectors have been underlined above. T3 is thus
executed first, which is correct. If T6 already had been executed before T3
was received, it is rolled back. The execution of event T3 in au5 enables T5
as well. T5 and T6 are in conflict now, and we assume that the probabilistic
choice selects T6 to fire first. There is still one token left in places P5 and P6,
and thus T5 fires afterward. Both firings lead to an event each with the logical
times shown in Table 9.4 for T6 and T5.

One special case remains. It is possible that the minimal path priorities of
two events are equal with the formula introduced above. This may happen if
the paths share a common atomic unit where conflicting immediate actions
were executed, which by chance have the smallest priority on the path. In the
example from Fig. 9.2, this is the case in atomic unit au8. Assume that the
conflict in au5 has been solved as stated above. This leads to the execution of
events T6 and T5 in au7 and au6. Transitions T7 and T8 then fire concurrently
in their respective atomic units, leading to the events and logical event times
shown in Table 9.4.

The order of execution of events T7 and T8 then needs to be decided in au8.
The following minimal path priorities are then computed (significant entries
are again underlined in the table):

PV T7,T8
min = 2 and PV T8,T7

min = 2

As it occurs, the order of the two events cannot be decided with the minimal
path priorities only. The reason is that both events have au5 as their common
predecessor, in which two conflicting transitions with the same smallest pri-
ority initiated them. However, the sequence must equal the ordering in which
the two events T7 and T8 were generated in the atomic unit that contained
the two conflicting actions. We only need to use the vector time entries that
correspond to the atomic unit in which the minimal path priorities were set
to detect the causal ordering.

Two events a and b have the same minimal path priority in this case. Event
a is then scheduled first if the vector time component of a that belongs to the
atomic unit aui, in which the minimal path priority was found, is smaller than
the corresponding one of event b. Formally, then

PV a,b
min = PV b,a

min = PV (aui) and VTa(aui) < VT b(au i)

When applied to our example of events T7 and T8, the determining atomic
unit is au5. T8 is scheduled before T7 despite its lower individual priority
because VT T8(au5) < VT T7(au5), which is correct. The compared values are
set in a bold style in the table.
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Compound Simulation Time

It has been shown above that standard logical time schemes are not sufficient
to unambiguously order events in a distributed SDES simulation. Vector time
must be complemented by a priority vector to manage immediate events with
individual priorities.

We define a compound simulation time cst ∈ CST which contains the
actual simulation time ST , vector time VT , and priority vector PV of an
event. The set of all possible compound simulation times is denoted by CST .

CST =
{
(ST ,VT ,PV ) | ST ∈ R

0+ ∧VT ∈ N
|AU | ∧ PV ∈ N

|AU |
}

Events e mark state changes that are either executed or scheduled in the
future of an atomic unit. Furthermore they are exchanged in messages. So
far we have used the term event only informally in this chapter. With the
definition of our proposed compound simulation time, a formal definition in
the context of distributed simulation is given now. An event e comprises the
executed action variant v and the corresponding compound simulation time
cst . The set of all possible events is denoted by E .

E = {(cst , v) | cst ∈ CST ∧ v ∈ AV }
Not only events have a corresponding cst , but also the local current time in an
atomic unit is defined as a compound simulation time. The remaining part of
this section defines how compound simulation times are compared, how their
values are derived for events that are newly scheduled in the event list, and
how the local simulation time changes when an event is executed.

Compound simulation time is intended for an ordering between different
events. For any two events e1 and e2, it must be clear which one has to be
scheduled first. Another application is the comparison of a remote event time
with the local simulation time, which is important to decide whether an event
is scheduled for the future or past of an atomic unit.

The comparison is performed using compound simulation times cst1 and
cst2 of events e1 and e2. While the comparison of the actual simulation times
is obvious, things are more complicated when vector times and priority vectors
are taken into account. This has been informally explained already above, and
is now defined formally. Elements of compound simulation times are denoted
by assuming that cst i = (ST i,VT i,PV i).

∀cst1, cst2 ∈ CST : cst1 < cst2 ⇐⇒
(ST 1 < ST 2) ∨

(ST 1 = ST 2) ∧
(
(VT 1 < VT 2) ∨

(VT 1 ‖ VT 2) ∧
[
(PV 1,2

min > PV 2,1
min) ∨

∃au ∈ AU :
(
PV 1,2

min = PV 2,1
min = PV 1(au)

)
∧

(
VT 1(au) < VT 2(au)

)])

(9.2)
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There are four cases. If simulation time or vector time allows a decision about
which time is smaller, it is taken accordingly (cases 1 and 2). If VT 1 ‖ VT 2,
the minimal path priorities are compared. The time with the greater value
is then smaller (case 3). If they are equal as well, the decision is based on
the vector time entry of the significant atomic unit (i.e., the one in which
the minimal path priority occurred). The last line of the equation ensures
that there is only one atomic unit au for which the minimal path priority is
reached.

Formally it is also possible that two compound simulation times are equal,
meaning that all elements are completely identical.9

∀cst1, cst2 ∈ CST : cst1 = cst2 ⇐⇒ (9.3)
∀au ∈ AU : VT 1(au) = VT 2(au)

This is, however, only possible in the case of two events that belong to the
same atomic unit, have zero delay and equal priority, and are being scheduled
for execution in a given local state. This means that they are in conflict
(otherwise they would have differing priorities and belong to other atomic
units), and the order of execution will be decided locally by a probabilistic
choice. Such a case will thus never be “seen” outside the responsible atomic
unit, and is of less importance because it does not introduce unambiguity in
event ordering. Two equal compound simulation times will otherwise never
be compared in the algorithms of Sect. 9.1.4.

Another issue is the selection of the compound simulation time cst ′ for an
event that is newly scheduled and inserted into a local event list. Assume that
cst ′ = (ST ′,VT ′,PV ′), current simulation time cstau = (ST ,VT ,PV ), and
action variant to be scheduled v = (a, ·).

Randomly select RAD ∼ Delay�(v)
ST ′ := ST + RAD (9.4)

∀au i ∈ AU : VT ′(au i) := VT (aui)

PV ′(au i) :=

⎧
⎪⎨

⎪⎩

∞ if ST ′ �= ST ∧ aui �= au
Pri�(a) if aui = au
PV (au i) otherwise

By doing so, the event is scheduled for the actual simulation time plus a
randomly drawn delay. If it is different from zero, all priority vector entries
are reset to infinity10 except for the local value, which is set to the priority

9 The simulation times ST1,ST 2 as well as the priority vectors PV 1,PV 2 are also
equal if this equation holds.

10 It would be possible to reset all entries of the VT vector to zero every time a
nonzero delay passes, just as it is done for the priority vector PV . This is, however,
avoided to keep the full causal information for all messages, including rollbacks,
for an improved message cancellation mechanism described in Sect. 9.1.4.
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of the scheduled action. The other entries are copied. The vector time is not
changed at this point; it is updated upon actual execution of the event later on.

The scheduled compound simulation time of future local events always
has to correspond to the current local compound simulation time. This means
that if a future event in the local event list stays executable after an event
execution, its compound simulation time has to be recalculated following the
equations above. The simulation time ST , however, is kept. This can be effi-
ciently implemented without recalculation by transparently mapping the cur-
rent local compound simulation time to affected future events.

When an event e =
(
cste, v = (a, ·)

)
(which is caused in an atomic unit

aue, a ∈ Region(aue)) is executed in the atomic unit au , the local com-
pound simulation time cstau = (ST ,VT ,PV ) is updated to (ST ′,VT ′,PV ′)
as follows. We assume that the elements of the event time are denoted as
cste = (ST e,VT e,PV e).

ST ′ := ST e (9.5)
∀aui ∈ AU :

VT ′(au i) :=

{
VT (au i) + 1 if aui = au
max

(
VT (aui),VT e(au i)

)
otherwise

PV ′(au i) :=

⎧
⎪⎨

⎪⎩

min
(
PV (au i),PV e(aui)

)
if ST ′ = ST ∧ au �= aue

Pri�(a) if ST ′ = ST ∧ aui = aue = au
PV (au i) otherwise

ST denotes the actual simulation time counted in model time units in this
equation. Thus the system spends some time in a tangible state iff ST ′ > ST .
This equation requires local causality, i.e., that cste

≮ cstau .
Rollbacks are necessary to overcome local violations of causality. An atomic

unit then “goes back” to a state before the problem, and executes the inter-
mediate events again. The vector time part of the local compound simulation
time is, however, not set back, because the causality of event executions should
cover rollbacks as well. A rollback thus leads to an increment of the vector
time entry corresponding to the local atomic unit. This means that vector
time and simulation time are not isomorphic in the sense that there might
be two events where one has a higher simulation time, while the other has a
greater vector time.

Confusions and Global Action Priorities

We require a unique and decidable ordering of different events for our algo-
rithms to work correctly and efficiently. The less-then relation of compound
simulation time pairs has been defined for this reason in (9.2). It worked
for the examples presented so far; there are, however, exceptions possible,
in which two different compound simulation times cst1 and cst2 cannot be
ordered with the definition.



190 9 Efficient Simulation of SDES Models

au2au1 T2 T4
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P3 P5 T5

Fig. 9.3. Simple Petri net with undecidable event ordering

Figure 9.3 shows a slightly different version of the simple Petri net model
depicted in Fig. 9.1; only the transition priorities have been changed. When
the events of firing transitions T2 and T3 are received in atomic unit au4

at the same simulation times ST T2 = ST T3, the corresponding values are
set for the vector times VT T2 = (1, 2, 0, 0), VT T3 = (1, 0, 2, 0) and priority
vectors PV T2 = (3, 1,∞,∞), PV T3 = (3,∞, 1,∞). For the vector times hold
VT T2 ‖ VT T3, thus the minimal path priority is taken into account. However,
PV T2,T3

min = PV T3,T2
min = 1, but there are two different atomic units au2 and au3

for which this value is reached in the compound simulation times.
Equation (9.2) loses its real meaning in this case, because both cst1 < cst2

and cst1 > cst2 hold at the same time. Is there anything we can retrieve
additionally from the model to obtain a correct ordering of events T2 and T3?
No, because a standard sequential simulation is not able to order these events
as well.11 The decision about which of the concurrent transitions T2 and T3
fires first is not determined by the model due to the equal priorities, although
its further behavior obviously depends on it. This is the exact definition of a
confusion, which we interpret as a modeling error.

Equation (9.2) defining the relation between two compound simulation
times thus only holds for confusion-free models. The last line otherwise would
have to be extended to
(
VT 1(au) < VT 2(au)

)
∧
(
�au ′ ∈ AU \ {au} : PV 2,1

min = PV 1(au ′)
)

(9.6)

Our definition of the compound simulation time together with the oper-
ations and comparison thus has a very nice side effect: as long as a model is
confusion-free, event ordering is always uniquely determined by a comparison
of the associated times. If the model behavior is simulated until a point where
an actual confusion takes places, it can be detected easily on the basis of the
compound simulation times. This has the advantage of only detecting errors

11 The definition of the stochastic process underlying an SDES model as given in
Sect. 2.3.2 is nonetheless well defined. It selects any one of the events with equal
probabilities.
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that actually play a role, compared to structural techniques which derive nec-
essary but not sufficient conditions using the model structure [53].

To complement the possible relations between two compound simulation
times, we formally define them to be concurrent as follows.12

∀cst1, cst2 ∈ CST : cst1 ‖ cst2 ⇐⇒
(ST 1 = ST 2) ∧ (VT 1 ‖ VT 2) ∧ (PV 1,2

min = PV 2,1
min) ∧

∃aui, auj ∈ AU : au i �= auj ∧ VT 1(au i) �= VT 2(auj) ∧
(
PV 1,2

min = PV 1(au i) = PV 2(auj)
)

(9.7)

This can be interpreted as follows: If two events cannot be ordered follow-
ing (9.2), then obviously the simulation times must be equal, the vector times
are parallel,13 and the minimal path priorities are the same. If there would be
only one atomic unit for which the smallest path priority is found, the decision
would be based on the vector time entry associated with it. The two values to
be compared would be different, because only priority entries with differing
vector time entries are compared for the minimal path priority. Therefore this
case can be excluded, and it is clear that there must be at least two distinct
atomic units in which the minimal path priority was found. The executions
of the associated actions cannot be ordered causally or by using priorities; a
confusion is thus encountered.

An actual implementation may either work with the confusion detection as
defined above, or assume a confusion-free model for improved efficiency. If the
SDES model to be simulated is confusion-free as required, conflicts can always
be solved locally inside an ECS, and thus inside one atomic unit. Events of
two or more actions belonging to different atomic units and having the same
priority may then be executed in any order, without changing the behavior
of the stochastic process. The order of execution of these events can then be
fixed arbitrarily. Different priority values must, however, be valid across the
borders of atomic units – the corresponding events need to be ordered by the
priority of the underlying action.

We may thus introduce a global event priority that associates a derived
priority Pri�

Global to every SDES action. It leads to a unique global priority
ordering as shown below, and thus makes a model confusion-free. It does not
change the behavior of a model which is already confusion-free though.

Pri�
Global : A� → N

This derived priority is calculated from the actual priority as follows.

∀a ∈ A�, a ∈ Region(au i) : Pri�
Global(a) = Pri�(a) |AU | + i

12 The definition can be obtained from (9.2) extended by (9.6) and assuming that
neither cst1 < cst2 nor cst2 < cst1 holds.

13 If the vector times are equal, an event is compared with itself.
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Such a mapping has the following properties. First and most importantly,
actions with a different priority keep the priority relation in the global priority.

Pri�(a1) > Pri�(a2) ⇐⇒ Pri�
Global(a1) > Pri�

Global(a2)

Second, equal priorities of actions in different au regions are ordered by the
arbitrary numbering of the atomic units. Third, the global priority of actions
in the same atomic unit stays equal. Thus a probabilistic decision between
actually conflicting events is locally possible. Finally, the associated atomic
unit can be easily calculated from a given global event priority.

(
i = Pri�

Global(a) mod |AU |
)
−→ a ∈ Region(au i) (9.8)

In the discussions and algorithms following below, it is possible to either use
global event priorities and a simplified comparison of compound simulation
times following (9.2), or the original priorities together with the confusion
check based on 9.7. If there is a way to ensure absence of confusion based on
the model structure for a specific model (class) a priori, original priorities and
the simplified comparison are sufficient.

9.1.3 Discussion of Compound Simulation Time

In our attempt to simulate a timed synchronous system on a distributed com-
puting hardware, a compound simulation time has been introduced earlier for
a reasonable event ordering. The goal of this section is to show that (1) our
algorithms associate a reasonable compound simulation time to each event,
(2) the introduced time scheme complies to the nature of time, and (3) it is
possible to derive global state information effectively using it.

Time can be interpreted as a set of time instances t, on which a temporal
precedence order is defined [235]. Events are time stamped by a compound
simulation time value as introduced in Sect. 9.1.2, and each possibly reached
value equals a specific logical time.

Relation Between Events and Clock Values

Do the algorithms associate a “meaningful” compound simulation time cst(ei)
to every event ei? This issue is considered as clock condition in literature (see,
e.g., [12, 218, 235]). If an event e1 may somehow affect e2 (which is denoted
by e1 → e2), it is mapped to an “earlier” logical time.14 This ensures that the
future cannot influence the past in the logical time scheme, as it is natural in
our understanding of the passage of time.

∀e1, e2 ∈ E :
(
e1 → e2

)
−→

(
cst(e1) < cst(e2)

)
(9.9)

14 Similar to the “happens before” relation in [218].
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We consider events ei of the distributed simulation here; they are related to the
simulated SDES model thus, and not to the distributed way of computation as
usually understood in the literature about distributed systems. An alternative
interpretation of e1 → e2 is thus that e1 is executed before e2 in a sequential
simulation.

We examine the conditions under which e1 affects (or is executed before) e2

in a sequential simulation. The following cases are distinguished for a complete
proof of the proposition in (9.9)15:

– If an event is executed later in the actual simulation (model) time, it may
be affected by an earlier event.

∀e1, e2 ∈ E :
(
ST 1 < ST 2

)
−→

(
e1 → e2

)

Then obviously also cst(e1) < cst(e2) because of the definition of “<” for
compound simulation times in (9.2).

– If an event has to be executed at the same simulation time, but is causally
dependent on another event, it should be executed later. Causal depen-
dency is fully captured by vector time [235]. Thus

∀e1, e2 ∈ E :
(
(ST 1 = ST 2) ∧ (VT 1 < VT 2)

)
−→

(
e1 → e2

)

which obviously leads to cst(e1) < cst(e2) due to the second line in (9.2).
– There are cases in which two events are executed at the same simulation

time, but are not directly causally dependent. Both belong to individual
paths of immediate executions then, which started at the same tangible
state. The two paths may share some prior immediate event executions,
which can be obtained from the entries of the vector time that are equal
and have an associated priority vector entry smaller than infinity. The
decision on which event has to be executed first must be based then on
the minimal priorities of action executions that have taken place since the
paths split up.

∀e1, e2 ∈ E :
(
(ST 1 = ST 2) ∧ (VT 1 ‖ VT 2) ∧ (PV 1,2

min > PV 2,1
min)
)
−→

(
e1 → e2

)

This is captured exactly in the computation of the minimal path priority:
the event that took the path with a smaller lowest priority will always be
ordered after another event. The “<”-relation for compound simulation
times covers this case accordingly, leading to cst(e1) < cst(e2).

– The final case occurs, if in a setting as described above the smallest pri-
orities of the paths occurred in their last common atomic unit. The two
event executions in this common atomic unit are different ones for the

15 Here and in all following proofs, we denote the compound simulation time asso-
ciated to an event ei by cst i, and its elements simply as cst i = (ST i,VT i,PV i)
for notational convenience.
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two paths, because their vector times would otherwise be equal, and thus
their priority would not have been taken into account for the minimal path
priority. Obviously there must have been a unique ordering of these two
previous events that started the different paths. This ordering is simply
given by the sequence of executions in the common atomic unit, which can
be directly deduced from the corresponding entry in the vector time.

∀e1, e2 ∈ E :
(
(ST 1 = ST 2) ∧ (VT 1 ‖ VT 2) ∧
[
∃au ∈ AU : PV 1,2

min = PV 2,1
min = PV (au)

]
∧

[
VT 1(au) < VT 2(au)

])
−→

(
e1 → e2

)

This case is covered in the bottom part of (9.2), and ensures that cst(e1) <
cst(e2).

– There are no other cases in which two events of a confusion-free model can
be in the “→”-relation of a sequential simulation, as it has been discussed
in Sect. 9.1.2.

With our choice of compound simulation time, even the converse condition
of (9.9) is true:

∀e1, e2 ∈ E :
(
cst(e1) < cst(e2)

)
−→

(
e1 → e2

)
(9.10)

Proof (Indirect). Assume we find e1, e2 ∈ E such that cst(e1) < cst(e2) and
not e1 → e2. With our assumption of global event priorities, it is always
clear which event has to be executed first in a sequential simulation. Relation
“→” over events is thus trichotomous, thus ¬(e1 → e2) −→

(
(e2 → e1) ∨

(e1 = e2)
)
. Obviously cst(e1) = cst(e2) if e1 = e2, which contradicts our

assumption and leaves the case e2 → e1. From the clock condition in (9.9), it
immediately follows that cst(e2) < cst(e1), which contradicts our assumption
as well (asymmetry of “<” is shown below). ��

Ordering based on compound simulation times of our distributed algo-
rithm thus ensures that events are processed in exactly the same way as in a
sequential simulation.

The mapping of events to compound simulation times is obviously a func-
tion: Every individual event is generated at an atomic unit, which increases
its local vector time (and possibly the simulation time) during the process.
The local entry thus reaches a new maximum value, which becomes a part of
the new event’s time stamp. There are no two events with the same vector
time for the same reason. It follows that the mapping of events to compound
simulation times is bijective, i.e.,

∀e1, e2 ∈ E :
(
e1 = e2

)
⇐⇒

(
cst(e1) = cst(e2)

)

From bijectivity and the corollaries given with (9.9) and (9.10), it follows
that the event set E with the “→”-relation is isomorphic to the compound
simulation times CST with the “<”-relation.

∀e1, e2 ∈ E :
(
e1 → e2

)
⇐⇒

(
cst(e1) < cst(e2)

)
(9.11)
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The compound simulation times can thus be used for a correct and unique
decision about the ordering of events.

Properties of Compound Simulation Time

There are some conditions that any model of time should adhere to (compare,
e.g., [235]), which we will check in the following for the compound simulation
time. We will thus show that the “<”-relation defined in (9.2) satisfies irreflex-
ivity, asymmetry, transitivity, linearity (more exactly trichotomy), eternity,
and density.

It should be noted that it makes no sense to analyze compound simulation
time entities with arbitrarily set values; we restrict ourselves to time stamps
of events that could possibly be obtained during a distributed simulation of a
real SDES model. Remember that such a model was required to be confusion-
free, and that no atomic unit is visited more than once during a specific
immediate path.

The reflexive and symmetric relation “‖” for compound simulation times
(cf. (9.7)) denotes simultaneity in our time scheme. Simultaneous events may
be generated, sent, and processed without problems, as long as they do not
have to be ordered in an atomic unit. Section 9.1.2 concluded that the latter
would be a (forbidden) case of confusion. We adopt the global event prior-
ities as introduced in Sect. 9.1.2, because their application does not change
the overall behavior in a confusion-free model. This will simplify proofs and
discussions due to the fact that then never cst1 ‖ cst2.

Proof (Irreflexivity of the “<”-relation). We have to show that

∀cst1 ∈ CST : ¬(cst1 < cst1)

Assume that cst1 ∈ CST can be found such that cst1 < cst1 for an indi-
rect proof. The elements of identical compound simulation times are of course
equal; thus neither ST 1 < ST 1 nor VT 1 < VT 1 will ever be true. In addition
to that, PV 1,1

min = PV 1,1
min = ∞ because VT 1 = VT 1. It is thus impossible to

find an atomic unit satisfying the two final lines of (9.2), which is a contra-
diction to the assumption. ��

Proof (Asymmetry of “<”). Formally,

∀cst1, cst2 ∈ CST : (cst1 < cst2) −→ ¬(cst2 < cst1)

Indirect proof : Assume we find cst1, cst2 ∈ CST satisfying (cst1 < cst2) ∧
(cst2 < cst1). If ST 1 �= ST 2, the decision about which time is smaller would
be based on the simulation times and unique (asymmetry of “<” for real
numbers), thus ST 1 = ST 2. With similar arguments it follows that VT 1 ‖
VT 2 and VT 1 �= VT 2 because otherwise cst1 = cst2 and neither one would
be smaller.
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Due to the differing vector times, it is always possible to obtain unique
minimal path priorities for cst1 and cst2. If we would have PV 1,2

min �= PV 1,2
min,

the “<”-relation would be true only for one comparison. It thus follows that
PV 1,2

min = PV 1,2
min. Because we adopted global event priorities, there is exactly

one atomic unit au for which PV 1,2
min = PV 1,2

min = PV 1(au) = PV 2(au)
holds. However, we know that VT 1(au) �= VT 2(au), because this entry would
otherwise have been ignored for the derivation of the minimal path priority.
Thus either VT 1(au) < VT 2(au) or VT 2(au) < VT 1(au). This means that
only one of the “<”-relations between cst1 and cst2 is true, leading to a
contradiction to our assumption. ��

Proof (Trichotomy of “<” for compound simulation times of events). Two
values are either equal, or exactly one is smaller than the other.16

∀cst1, cst2 ∈ CST : (cst1 = cst2) ⊕ (cst1 < cst2) ⊕ (cst2 < cst1)

Let us consider the case cst1 = cst2 first. The equation is fulfilled because
neither cst1 < cst2 nor cst2 < cst1, which follows directly from irreflexivity.

It remains to prove that if cst1 �= cst2, either cst1 < cst2 or cst2 < cst1
holds. There are two parts to this proof. First, we must prove that never
cst1 < cst2 and cst2 < cst1, which we have already shown (asymmetry). We
thus only have to show that the “<”-relation is linear17

∀cst1, cst2 ∈ CST : (cst1 �= cst2) −→
(
(cst1 < cst2) ∨ (cst2 < cst1)

)

The proof is similar to the one for asymmetry. Assume ST 1 �= ST 2: then
either cst1 < cst2 or cst2 < cst1 (trichotomy of “<” for real numbers). We
thus only need to consider the case ST 1 = ST 2. We know that VT 1 �= VT 2

because cst1 �= cst2. Assume now further that VT 1 < VT 2 or VT 2 < VT 1:
then obviously cst1 < cst2 or cst2 < cst1, and the proposition holds. It thus
remains to show that it is also true in the case VT 1 ‖ VT 2.

The minimal path priorities are now inspected: If PV 1,2
min �= PV 2,1

min, the
proposition becomes true. What happens if PV 1,2

min = PV 2,1
min? There is ex-

actly one atomic unit au for which the minimal path priority is achieved
(PV 1,2

min = PV 1,2
min = PV 1(au) = PV 2(au)), because of the use of globally

unique priorities. However, PV 1(au) has been considered in the computation
of the minimal path priority, which means that VT 1(au) �= VT 2(au). Thus
one of the entries is less than the other (trichotomy of “<” for naturally num-
bered priorities), and the proposition is thus true in this final case as well. ��

Proof (Transitivity of “<” for compound simulation times). It has to be
proven that

∀cst1, cst2, cst3 ∈ CST :
(
(cst1 < cst2) ∧ (cst2 < cst3)

)
−→ (cst1 < cst3)

16 ⊕ denotes the exclusive-or relation.
17 Obviously only in the restricted sense of an irreflexive relation.



9.1 Distributed Simulation of SDES Models 197

Application of (9.10) to the two conditions leads to (e1 → e2)∧(e2 → e3). The
relation “→” on events ei ∈ E is obviously transitive: If an event e1 has to be
executed before e2, and e2 before e3 in a sequential simulation, e1 needs to
be executed before e3 as well. Thus, we conclude that (e1 → e3), from which
cst1 < cst3 follows with (9.9).18 ��

Proof (Eternity). This means that there is always a smaller and a greater
time for any given value for our time scheme:

∀cst1 ∈ CST ∃cst2, cst3 ∈ CST : cst1 > cst2 ∧ cst1 < cst3

This is obviously true because already for the simulation time part ST , which
is a real number, there is always a smaller and a greater value. ��

Proof (Density). There is always a compound simulation time between any
pair of different times, because the real-valued simulation time entries are
dense as well.

∀cst1, cst3 ∈ CST ∃cst2 ∈ CST :

(cst1 < cst3) −→
(
(cst1 < cst2) ∧ (cst2 < cst3)

)

As a conclusion, the relation “<” on CST is a strict total order, because it
has been shown to be irreflexive, trichotomous, and transitive. Moreover it is
a well-founded relation, thus ensuring that for any nonempty subset of CST
there is a unique “<”-minimal element. This property is necessary for each
atomic unit when the future event with the smallest associated time has to
be selected for execution from the event list. ��

Global States

A common problem to all distributed algorithms (and thus simulations) is
to determine a global state over the numerous local states of each process.
Access to global state information is necessary in an SDES model on various
occasions. Guard functions of colored Petri nets are an example for a state-
dependent enabling of action variants, which is captured in Ena�(·). Issues
like a maximum capacity lead to a specification of a state condition Cond�

for a state variable. Finally, the derivation of performance measures requires
the derivation of state variable values at certain times as well as the execution
times of action variants.

An evaluation of any expression with parameters that depend on remote
state variables requires a correct computation of a global state for the exact
time it is requested for. This leads to an additional problem: The atomic
unit in which the state variable is maintained might not have reached the

18 An alternative proof based on compound simulation times and ordering possibil-
ities of associated events has been given in [210].
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simulation time for which the state is requested. In that case we follow the
idea of optimistic simulation by assuming that the state will not change until
the requested time. If it does so later, the affected atomic unit is notified and
rolls back accordingly.

State variable access is, however, only locally possible in a distributed sim-
ulation. The issue of deriving information about remote states at a given time
is known as a global predicate evaluation problem [12]. Due to the possibly
different speed and numbers of events to be processed at each atomic unit,
the local simulation times may significantly vary. Information about remote
states can thus be obsolete, incomplete, or inconsistent. In the general set-
ting of distributed algorithms, this leads to the development of methods to
obtain a global state, which use only the causality relation between message
sending and reception as well as the sequence of event executions of local
processes [12, 44, 235].

A global state of a distributed simulation consists of a set of local states,
one for each logical process (i.e., atomic unit in our approach). Every local
state associates a value to each locally maintained state variable. A state is
valid between two event executions at the atomic unit due to the nature of
discrete event systems. It is thus possible to talk about events or states when
analyzing the correctness of a global state.

Events in a distributed system are often visualized in a space–time di-
agram (see, e.g., [12, 218]), in which the event and state sequences of each
atomic unit are sketched in horizontal time lines. The different lines model
the spatial distribution of the processes, and messages between the processes
and thus causal relationships can be drawn as arrows between the horizontal
lines. If we select a local state for each atomic unit in the graph and connect
all these points by a zigzag line, we have a graphical representation of a global
state. Every global state that an observer may obtain can obviously be de-
picted in that way. The strong relationship between events and states in that
aspect is clear because every state can be uniquely identified by its rightmost
predecessor event.

Such a state-connecting line cuts the sets of events at each atomic unit into
a past and a future set. It is thus called a cut C and defined as a finite subset
of an event set E such that for every event e in it, all events are also included
which were executed before e locally in the atomic unit producing e [235].19

C ⊆ E subject to ∀au ∈ AU , ∀e ∈ E (au) ∈ C : (e′ → e) −→ (e′ ∈ C)

A cut thus respects local causality: All events left of the cut in the space–time
diagram are included. However, not every one of these possible observations
corresponds to a consistent state.

A cut C is consistent if it respects global causality as well: For every event
e in the cut, all events that causally precede it are included in C [235].

∀e ∈ C : (e′ → e) −→ (e′ ∈ C) (9.12)

19 E(au) denotes the set of events belonging to atomic unit au.
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In a distributed algorithm, causality is related to local event execution and
message sending and reception. It is thus required that if the receive event of a
message has been recorded in the state of a process, then its send event is also
recorded in the state of the sender [218]. This property can be checked graph-
ically in the time–space diagram: If there is an arrow (modeling a message
transfer) which crosses the cut line backward, the cut is not consistent.

A global state in a distributed computation is consistent, if it belongs to
a consistent cut. A consistent cut corresponds to a state that is possibly ob-
served in a run of the algorithm, but not necessarily reached. Consistent cuts
and thus states are not unique: It is possible to add or delete events that
are concurrent to all other events in remote atomic units, without interfering
with consistency. This is not acceptable in our environment for SDES perfor-
mance evaluation, where the causal, timing, and priority relations between
events must be obeyed correctly. We have already shown earlier that the in-
troduced compound simulation time allows to order events exactly, and to
clearly separate between confusions and determined behavior. It is verified
in the following that our use of CST leads to consistent global states. Note
that this would be impossible for models with immediate delays and priorities
based on traditional methods.

Proof (Consistent global states). Every inquiry about remote states corre-
sponds to a compound simulation time cst , for instance resulting from the
enabling check of an action at a certain local simulation time of its atomic
unit. Depending on the result, an event e = (cst , ·) might be executed at time
cst . The remote states that are valid at this time point correspond to a cut
Ce. Every atomic unit can easily decide which of its own events belong to Ce

based on the compound simulation times.

∀au ∈ AU , e ∈ E (au) :
(
e ∈ Ce

)
⇐⇒

(
e ∈ PastEvListau

cst

)

In the equation, PastEvListau

cst denotes the part of the local event list of atomic
unit au that lies in the past of cst , and is defined in (9.14). Such a cut is
graphically represented by a straight vertical line in a time–space diagram
with simulation time as the x-axis.

The past of the event lists contains all events with a compound simulation
time before cst , and the cut Ce is derived as the union of the local event sets.

Ce =
⋃

au∈AU

PastEvListau

cst

Such a cut is obviously unique by construction, because the membership of
events to PastEvListau

cst is well defined due to the trichotomy of “<” for com-
pound simulation times. We can thus deduct that an event is in the cut iff it
was executed before cst .

∀e′ ∈ E :
(
cst(e′) < cst(e)

)
⇐⇒

(
e′ ∈ Ce

)
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With the isomorphism between “<” for compound simulation times and “→”
for events (cf. (9.11)), it follows directly that

∀e′ ∈ E :
(
e′ → e

)
⇐⇒

(
e′ ∈ Ce

)

To check if a cut Ce is consistent (cf. (9.12)), we assume that it is possible to
find events e′, e′′ ∈ E subject to

e′′ ∈ Ce ∧ e′ → e′′ ∧ e′ /∈ Ce

From e′′ ∈ Ce, we know that e′′ → e, which leads to cst(e′′) < cst(e). Moreover
cst(e′) < cst(e′′) because of e′ → e′′. Thus also cst(e′) < cst(e), and therefore
e′ ∈ Ce contradicting the assumption. ��

Every global state that is constructed for a certain compound simula-
tion time is thus consistent. It should, however, be noted that this discussion
assumes a “correct” simulation that does not violate the local causality con-
straints; the rollback mechanism ensures that other runs are taken back.

Moreover, we remark that the theoretical discussion is based on local state
variables belonging to the region of each atomic unit. In the actual implemen-
tation, a copy of the additionally required ones is maintained (mirrored state
variables, cf. Sect. 9.1.4). Consistency between the copies is achieved by the
event executions that are notified with messages.

9.1.4 A Distributed Simulation Algorithm for SDES

This section lists and describes the necessary algorithms for a distributed
optimistic simulation of SDES models. Theoretical prerequisites have already
been covered in the earlier parts of this chapter. We start with a description
of the basic data structures of each atomic unit. The second subsection covers
communication message types and contents. Actual algorithms are explained
in the final part and have been implemented as a prototype extension of the
TimeNET tool (cf. Sect. 12.1) for stochastic colored Petri nets as covered in
Chap. 6.

Data Structures

Each atomic unit au ∈ AU of a distributed simulation maintains the following
basic data structures.

The local simulation time describes the current value of the simulated
clock. It equals the time of the last processed external or internal event in the
atomic unit. It is a compound simulation time (cf. Sect. 9.1.2) including simu-
lation time, vector time, and priority vector, and is denoted by cstau ∈ CST .

The event list EvListau ⊆ E is a list of events e = (cst , v), i.e., pairs
of action variants v to be executed, together with their scheduled compound
simulation times cst . They are ordered by the cst time for efficient access.
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The event list does not only hold the events that are scheduled in the future
with respect to the local simulation time (as it is done in sequential simu-
lations), but also the processed events. They are necessary to keep track of
the history in case of rollbacks. The event list includes local events due to
scheduled action executions inside the atomic unit, as well as remote events
that inform the au about possible local state changes due to remote ac-
tion executions. Rollback messages are processed immediately and thus not
stored.

Based on a given simulation time cst , we denote the future and past of
the event list with respect to cst by FutureEvList

cst and PastEvList
cst , respectively.

The two subsets of the event list are defined as follows.

FutureEvList
cst = {(cst i, ·) ∈ EvList | cst i > cst} (9.13)

PastEvList
cst = {(cst i, ·) ∈ EvList | cst i < cst} (9.14)

(9.15)

In case of rollbacks, it is necessary to step back in the event list EvList to a
point just before the rollback time cst . To simplify notation in the algorithms,
we define LastBeforeEvList

cst accordingly.

LastBeforeEvList
cst =

⎧
⎪⎨

⎪⎩

cst1 if
∃(cst1, ·) ∈ EvList : cst1 < cst ∧
�(cst2, ·) ∈ EvList : cst1 < cst2 < cst

cst Initial otherwise
(
i.e., PastEvList

cst = ∅
)

The lower case LastBeforeEvList
cst = cstInitial covers circumstances in which

there is no event before cst in the event list, i.e., it should be rolled back before
the first scheduled event. The initial time of the simulation run cst Initial is
then used.

The local state list StListau captures the past states for the state variables
sv ∈ SV �

local(au) of an atomic unit au. It is stored as an ordered list of states
and the simulation times from when they were valid. Corresponding lists are
maintained in the actual implementation both for the state variables of the
region ∈ Region(au) as well as the mirrored ones individually. This is done
to improve efficiency and to differ between local and remote state variables
and their changes. From the theoretical standpoint and the presentation given
here, this distinction is, however, not necessary. It is thus avoided to simplify
algorithms and explanations. Mirrored states are assumed to be contained in
the local state list in the following. Thus a local state contains values for all
state variables that are locally known, i.e., ∈ SV �

local(au).

StListau ⊆ CST × Σau

The local state list is organized as an ordered list of pairs such that the local
state reached after the execution of an event e = (cst , v) can be obtained by
StList(cst). If there was no state change at the given simulation time, the
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term just returns the state at that time, i.e., between the two surrounding
events. We thus define

StList(cst) = σ1 ⇐⇒ ∃(cst1, σ1) ∈ StList : cst1 ≤ cst
∧ �(cst2, σ2) ∈ StList : cst1 < cst2 ≤ cst

The current state of an atomic unit au is thus always given by StList(cstau).
This state information is used by local actions to decide about their enabling.

Mirrored and local state information is updated based on the informa-
tion that is sent by the atomic units, in which actions were executed that
potentially change the state. The information may not be final or up to date
with the local simulation time. It is, however, assumed to be valid in all local
expression evaluations until a different information might become available.
A rollback is then necessary. This is exactly the same behavior as for state
changes in the local state variables.

Similar to the past part of the event list with respect to a compound
simulation time, we define the past of the state list as20

PastStList
cst = {(cst i, ·) ∈ StList | cst1 < cst}

Figure 9.4 depicts some of the basic data structures of an atomic unit and
their relation over time. Action variant vi has been executed at compound
simulation time cst i, and is stored in the event list accordingly. It changed
the state of the local state variables of the atomic unit to σi+1. This state was
valid until the time point cst i+1, at which action variant vi+1 was executed
and led to the local state σi+2. The current local simulation time cstau equals
this time, which means that vi+1 was the last executed event. All later events
in the event list, i.e., vi+2, vi+3, . . ., are scheduled for future execution. There
is thus no associated state change stored in StListau yet; state-dependent

EvListau
Event list

State list
StListau

cst i+1 cst i+2

(cst i, vi) (cst i+1, vi+1) (cst i+2, vi+2)

time

(cst i+1, σi+1)

LastBeforeEvList
cstx

FutureEvListau

cstx

cst i
cstx = cstau

(cst i+2, σi+2)

Fig. 9.4. Data structures of an atomic unit and their relation

20 The future with respect to the local simulation time is always empty, because
state-changing events are only processed when they are reached by the local time.
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expressions in the atomic unit assume that the state σi+2 is not left until
further notice.

If a straggler message or rollback notification from another atomic unit
is received with an associated compound simulation time cstx, the shown au
goes back to the state that was valid before cstx, namely LastBeforeEvList

cstx
.

Future and past parts of event and state list are used in the algorithms; the
figure depicts FutureEvListau

cstx
as an example.

Communication Messages and Rollbacks

The distributed simulation processes need to be synchronized by exchang-
ing messages. The implementation described here uses the message passing
interface (MPI; [106]).

Atomic units on different nodes are managed by the corresponding logical
processes, and exchange messages via them. Communication between atomic
units inside one logical process is done directly without sending actual mes-
sages; this avoids the communication overhead otherwise necessary. In addi-
tion to that, copies of state variables belonging to the region of atomic units
that reside on the same logical process are not kept in the local state list,
because it is possible to directly access the associated state history. However,
if an atomic unit is migrated to a different node, such a part of the state list
has to be copied and sent together with the migrating unit.

The algorithms shown below avoid the technical details of message routing
and buffering done by the logical processes. The description assumes direct
message exchange between atomic units. The chronological order between
messages in node–node pairs is guaranteed by the underlying MPI protocol.

The following message types are used in the approach presented here.

Event. Messages are sent by an atomic unit to notify others of a local event
execution. An event is described by simulation time and SDES action
variant. The message is sent in case that the state of a remotely
known state variable could change as a result. The set of atomic
units to be informed about the execution of an event can be obtained
from the executed action a by AUaffected(a).
An event message is characterized by the type “EventNotify.” The
other parameters include source and destination atomic unit of the
message as well as the executed event.

Rollback. Messages inform other atomic units of a causality violation. They
are either generated after a straggler message is received, or simply
forwarded to others upon receipt.
Rollback messages are identified by the first parameter “Rollback.”
Source and destination atomic unit of the message are contained as
well as the compound simulation time to which the time needs to
be rolled back.
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Logical processes in standard distributed optimistic simulations [103] keep
a record of all sent messages. In case of a rollback, negative or antimessages are
sent for all messages that were communicated in the time window that is rolled
back, i.e., between the rollback time and the current local time. This leads to
a lot of messages to be exchanged, and is denoted as aggressive cancellation.
Some of the antimessages can be avoided by additional bookkeeping: It is then
possible to check whether the state reached at the local time again later differs
from the original state at that time. If so, no antimessage is necessary. Lazy
cancellation employs several of these techniques. In the approach presented
here, individual antimessages are not sent at all; there is only one rollback
message to inform a destination atomic unit about a local rollback. This is
possible because all events can be uniquely attributed to the past or future of
a rollback, due to the exact ordering based on our compound simulation time.

Rollbacks can occur frequently and may be cascaded, interrelated, or even
circular in conventional approaches. The reason for this is that events, which
are causally dependant on the events rolled back, are not identified at the time
of a causality error. The time representation of standard optimistic distributed
simulation algorithms is not sufficient to causally relate events and rollbacks,
because it includes the local simulation time only.

Our approach allows to rollback to an exact point in the event list because
the comparison of times is transitive and trichotomous. The results of [296] can
be transferred to our notion of time, which ensures that an optimal consistent
state is achieved during a global rollback. It furthermore guarantees a lifelock-
free simulation progress, and that there are no circular rollbacks.

The compound simulation time carries enough causal information to be
exploited for an even better cancellation. The technique presented in [334] en-
sures a message cancellation that is shown to be optimal in the sense that no
unnecessary rollback or event is processed. It is an advancement of a causal-
ity representation and cancellation mechanism for Time Warp simulations
proposed in [46]. The approach of [334] has been adapted for our simula-
tion environment. Atomic units ignore events that will be rolled back eventu-
ally, leading to significant savings in computation and communication. This is
due to the fact that, assuming an aggressive cancellation strategy, the events
causally dependant on the rolled-back event will be rolled back later on any-
way. In addition, early recovery operations such as restoring state and ignoring
events that will be rolled back can be performed for interrelated rollbacks.

A set of invalid vector time intervals is attached to each message. This
helps to identify related cancellation messages and hence avoid interrelated
and cascading rollbacks. It is important for this approach to causally relate
rollbacks, which can be done with the vector time part of the compound
simulation time. This is the reason why vector time entries are never set
back to zero, which would be possible at nonzero delays if they were only
used for the ordering of immediate events. An example showing the number
of prevented rollbacks has been given in [211]. Details are omitted in the
algorithmic description below to improve readability.
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Distributed Simulation Algorithm

Algorithm 9.1 shows UpdateLocalTime, a function that advances the local
simulation time cstau to a new EventTime. This is done in case of the exe-
cution of a local or remote event from the event list, in which case the time
actually increases. If a rollback is performed, the local time must be set back
to the rollback time, which is also done by this function.

The three components of the local compound simulation time, namely
simulation time, vector time, and priority vector, need to be set. The local
vector time is processed first. For every entry it assumes the maximum value of
the old local vector time and the entry of the new event. The vector time entry
that corresponds to the local atomic unit, VT au(au), is always incremented
because local causality also covers rollbacks.

The priority vector is updated next, according to (9.5). Priority values
are set back to the default value infinity due to the corresponding values in
scheduled events, which are copied into the local time here.

Algorithm 9.2 shows an abstract implementation of a rollback of an atomic
unit, function AtomicUnitRollback. It is invoked by functions described
later on either when a rollback message has been received or a rollback is
caused by the reception of a straggler event. It should be noted that rollbacks

UpdateLocalTime (au, EventTime, EventPrio, Remote)

Input: Atomic unit au, time of the initiating event EventTime,
priority of event (or ∞ in case of a rollback), flag Remote

(∗ Assume the following notation ∗)
cstau = (ST au ,VT au ,PV au)
EventTime = (ST e,VT e,PV e)

(∗ Local vector time is monotonic; others follow causality ∗)
VTau(au) := VT au(au) + 1
for aui ∈ AU \ {au} do

VT au(aui) := max
(
VT au(aui),VT e(au i)

)

(∗ Update priority vector ∗)
for ∀aui ∈ AU do

if Remote ∧ (ST au = ST e) then
PV au(au i) := min

(
PV au(au i), EventPrio

)

else PV au(aui) := PV e(aui)
if EventPrio = ∞ then PV au(au) := EventPrio

(∗ Set new local time ∗)
cstau := (ST e ,VT au ,PV au)

Algorithm 9.1: Update the local simulation clock of an atomic unit
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AtomicUnitRollback (au, RollbackTime, auSource , Always)

Input: Atomic unit au, RollbackTime, causing auSource , Flag Always

(∗ Delete events after rollback time that came from auSource ∗)
NoEventFound := True
for ∀e =

(
cst , (a, ·)) ∈ FutureEvListau

RollbackTime do
if a ∈ Region(auSource) then

EvListau := EvListau \ {e}
NoEventFound := False

(∗ Return if rollback time has not been reached or no event was deleted ∗)
if RollbackTime > cstau ∨ (NoEventFound ∧ not Always) then return

(∗ Delete local events after rollback time from the event list ∗)
NotifyAUs := {auSource}
for ∀e =

(
cst , (a, ·)) ∈ FutureEvListau

RollbackTime do
if a ∈ Region(au) then

EvListau := EvListau \ {e}
NotifyAUs := NotifyAUs ∪ AUaffected (a)

(∗ Delete states after rollback time ∗)
StListau := PastStListau

RollbackTime

(∗ Update local time and event list ∗)
cstau := LastBeforeEvListau

RollbackTime

UpdateLocalTime(au , RollbackTime,∞, True)
UpdateActivityList

(
StListau(cstau),FutureEvListau

cstau , cstau
)

(∗ Notify possibly affected atomic units ∗)
for ∀aui ∈ NotifyAUs do

Send (’Rollback’, au, aui, RollbackTime)

Algorithm 9.2: Rollback an atomic unit au

are never caused by causality errors between atomic units belonging to the
same logical process, because events are executed in the right order there.

The function requires as parameters the affected atomic unit, the time to
which it should be rolled back, the initiating atomic unit auSource , and a flag
denoting that the rollback should be executed in any case (see below).

The event list of the atomic unit is scanned first for events in the future
of the rollback time, which came from the originating atomic unit. These
events obviously have to be removed. In the case that the rollback time has
not been reached by the local simulation time, nothing else needs to be done,
and the function returns. The same applies to cases in which no event had
to be removed before, because then au was not influenced by auSource since
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the rollback time. If the function was called due to a straggler message, the
atomic unit needs to be rolled back anyway, which is specified by setting flag
Always = True.

If the atomic unit needs in fact to be rolled back, the algorithm continues
by deleting all local events from the event list that are scheduled after the
rollback time. The set of atomic units which need to be informed about the
deleted events is derived on the fly. As every local event that has been executed
already lead to an event message to all possibly affected atomic units, they
must all be notified about the rollback. All states in the local state list after
the rollback time are deleted as well.

The internal state of the atomic unit is finally set back to the rollback time
by invoking UpdateLocalTime with the rollback time, and by an update
of the event list for this new time via UpdateActivityList. The priority of
the causing event needs to be set to infinity in the first call, because there is
no actual event to be processed and the minimum path priority needs to be
kept. Remote effects of the rollback are finally considered by sending rollback
messages to all atomic units that need to be notified.

The rollback algorithm called a function UpdateActivityList, which
can be implemented for the distributed optimistic simulation similar to the
one shown on page 137 for the sequential simulation. It is thus not repeated
in detail here; the differences are briefly outlined in the following.

States are only considered local to the executing atomic unit; if local or
remote state variables need to be accessed, their values are taken from the
state list as StListau(sv , cstau). They always exist in the atomic unit, because
the local state variable set SV �

local(au) contains all eventually used ones.
The original version of UpdateActivityList assumes that the event list

only contains future events (as in a standard simulation), and is thus called
from the distributed algorithms with FutureEvListau

cstau to ignore past events.
Another purely technical difference is that UpdateActivityList assumes
elements of the event list as three tuples of action, action mode, and time.
Elements of the distributed version are constituted of time and action variant,
which in turn contains action and mode.

Additional events are scheduled for later execution in the lower part of
Algorithm 7.2, if the degree of concurrency is not yet fully utilized. When
elements of the event list are sorted, the compound simulation time must
obviously be used instead of simple time (and priority, if applicable). This is
done according to (9.2) and (9.4).

Vector time and priority vector of local events which are scheduled in the
future event list have to follow the causality knowledge of the overall atomic
unit (cf. explanation and equations on page 188). Both have to be updated
using the local vector time and priority vector in UpdateActivityList for
every future event which stays in the event list. Only the priority entry of the
scheduled event itself must reflect its global priority. An actual implementation
could improve efficiency if vector time and priority vector of future local events



208 9 Efficient Simulation of SDES Models

AtomicUnitReceiveMessage (m)

Input: Message m

(∗ Remote event (or mirror) notification ∗)
if m = (’EventNotify’, auSource , au , Event) then

(cst , v) := Event
EvListau := EvListau ∪ {Event}
if cst > cstau then return
(∗ m is a straggler message; initiate rollback ∗)
AtomicUnitRollback(au, cst , auSource , True)
return

(∗ Rollback message ∗)
if m = (’Rollback’, auSource , au, cst) then

AtomicUnitRollback(au, cst , auSource , False)
return

Algorithm 9.3: Receive a message and sort it into local lists

are not stored at all, but copied from the local compound simulation time
whenever needed.

Whenever a message is received by a logical process, AtomicUnit-

ReceiveMessage(showninAlgorithm9.3) is invokedtohandle it.Themessage
is passed as the only parameter. Two cases are distinguished in the algorithm,
which correspond to the types of messages (see page 203) that are exchanged.

The received event is added to the event list upon reception of an Event-
Notify message. If the remote event is scheduled for a time in the future of the
local simulation, nothing else needs to be done. The message might otherwise
violate the local causality constraint, and is denoted as a straggler message.
The atomic unit is rolled back to the time of the event by calling Atomic-

UnitRollback accordingly. The straggler event will be executed later on,
because it is still in the event list.

In the case that the original action priorities are used instead of the global
event priorities, confusions can be detected at the point where the new event
is inserted into the event list. If the insertion point is not exactly specified, i.e.,

∃(cst ′, ·) ∈ EvListau : cst ′ ‖ cst

a confusion has been detected.
It is not necessary to remove other future events originating from the same

atomic unit. In such a case the remote atomic unit has been rolled back earlier,
and a corresponding rollback message would have been received. This message
would then already have led to deleting all remote events from that atomic
unit after the rollback time.

When a Rollback message is received, the rollback function simply needs
to be invoked for the local atomic unit.
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AtomicUnitProcessEvent (au)

Input: atomic unit au for which the next event should be processed

(∗ Select next event to be executed, including probabilistic selection ∗)
(cst , v) := SelectActivity(FutureEvListau

cstau )
Assume v = (a, ·)
if a ∈ Region(au) then Local := True

(∗ Execute the event ∗)
LocalState := StListau(cst)
NewLocalState := Exec�(v , LocalState)
StListau := StListau ∪ {(cst , NewLocalState)}

(∗ Update time and event list ∗)
UpdateLocalTime

(
au, cstau ,Pri�

Global (v),¬Local
)

UpdateActivityList(NewLocalState,FutureEvListau

cstau , cstau)

(∗ Notify affected atomic units if the event was local ∗)
if Local then

for ∀aui ∈ AUaffected (a) do
Send

(
’EventNotify’, au, aui, (cst

au , v)
)

Algorithm 9.4: Optimistic distributed simulation algorithm

The actual processing of internal or remote events from the event list
is done by AtomicUnitProcessEvent shown in Algorithm 9.4. Only the
individual atomic unit is given as a parameter, because all other information
is available in the au-specific data structures.

The event to be executed is selected from the event list by calling func-
tion SelectActivity (description given later). The algorithm checks and
stores whether the event was caused by a local action. State variables are up-
dated via the SDES execution function subsequently, which is applied to the
locally known variables only. The new state is added to the state list with the
compound simulation time of the state change.

Local simulation time and event list are updated using the functions
UpdateLocalTime and UpdateActivityList as described earlier. Finally,
all atomic units that might be affected by the execution of the event are in-
formed about it. This is done for local events only, because atomic units that
are affected by remote events are notified by the corresponding atomic units.

The next event to be executed is obtained from the future part of the event
list by calling algorithm SelectActivity (see page 139). This function from
the standard simulation can be reused with some changes. First of all, the
tuple format of the event list elements has to be reorganized and time has
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to be interpreted as compound simulation time as it has been explained for
UpdateActivityList earlier.

The priority-based search in the events that are scheduled for the same
time in the original version of SelectActivity is not necessary here,21 be-
cause action priorities are already encoded in the priority vector part of the
event times, and are thus ordered correctly in the list. The only point where a
decision needs to be made is when there are several immediate actions sched-
uled for the same time, which have the same priority. This is, e.g., the case for
conflicting immediate transitions of a Petri net, and the scheduled compound
simulation times are equal as defined in (9.3). The probabilistic selection is
done by SelectActivity based on the individual weights Weight�(·). It
should be noted that this selection will never be done between local and re-
mote events, because they would never have equal compound simulation times,
which means that there is a unique ordering in the event list. Conflicting ac-
tions have to be placed into the same atomic unit as described in Sect. 9.1.1.

Function LogicalProcess is shown in Algorithm 9.5 and implements the
activities of each logical process running on a node. It comprises an initializa-
tion of all corresponding atomic units and a main simulation loop.

Each atomic unit starts with a local compound simulation time equal to
the overall simulation start time cst Initial , which is provided by the calling
process and usually zero. The initial states of all local state variables are
set according to their SDES initial value, and the obtained state is added
together with the initial time as the first entry of the state list. The event list
is constructed by calling UpdateActivityList with a previously empty list.
This call selects and schedules events due to local action enablings and adds
them to the list with the adaptations described above.

The main loop of the logical process receives messages from other processes,
distributes them to its atomic units by invoking AtomicUnitReceiveMes-

sage, and starts event executions of its atomic units via AtomicUnit-

ProcessEvent. The decision between these two activities might be done
heuristically or even based on time lags between processes, which is not de-
tailed here. In the algorithm it is assumed that all incoming messages are
received first before any actual event is processed. The event processing in
the lower part of the loop always selects the event with the smallest time of
all scheduled events in the atomic units of the logical process. This avoids
causality violations between them.

The computations stop and the loop is exited when some predefined stop
condition is reached, e.g., a certain accuracy or a maximal simulation time.
The safe time as computed using the approach [283] for the fossil collection can
be used for this purpose as well, because then it is clear that all performance
measures have been computed until the maximum time (see below). This does
of course depend on the type of evaluation (transient or steady-state) as it was
explained in more details for the standard simulation algorithm in Sect. 7.2.

21 It could, however, be used with the global priority instead of Pri�(·).
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LogicalProcess (AU lp , cst Initial )

Input: Information about atomic units AU lp that are mapped to lp,
Initial simulation time cst Initial

(∗ initializations ∗)
for ∀au ∈ AU lp do

cstau := cst Initial

(∗ start with initial state in state list ∗)
for ∀sv i ∈ Region(au) ∩ SV � do

sv i,0 := Val0
�(sv i)

StListau :=
{(

cst Initial , (sv1,0, sv2,0, . . .)
)}

(∗ initialize event list ∗)
EvListau := ∅
UpdateActivityList

(
StListau(cstau),EvListau , cstau

)

(∗ main simulation loop ∗)
repeat

(∗ receive remote messages from other lps and sort into aui ∗)
for ∀m ∈ ReceivedMessages do

AtomicUnitReceiveMessage(m)

(∗ select and process next event ∗)
cstnext := minaui∈AUlp

(
min

(cstk,·)∈FutureEvListaui
cstaui

(cstk)
)

Assume (cstnext , ·) ∈ EvListau

AtomicUnitProcessEvent(au)

until stop condition reached, e.g., minau∈AU (cstau) ≥ MaxSimTime

Algorithm 9.5: Logical process lp

The main distributed simulation algorithm is responsible for setting up the
logical process on the available computing nodes, and for the partitioning of
the SDES model according to the rules introduced in Sect. 9.1.1. The atomic
units need to be distributed over the logical processes as well. The aim of
this approach is, however, not a perfect partitioning obtained from the model
structure, but to allow an automatic load balancing by arbitrary partitioning
and migration of model regions.

The logical processes lp ∈ LP are started one per node, and each is sup-
plied with the necessary information about associated atomic units as well
as the initial simulation time cstInitial . The main program then waits until
the logical processes have finished. Intermediate values for the performance
measures are read and the results computed.

After the explanation of the central algorithms of the proposed distributed
simulation algorithm, some aspects that have been left out so far are discussed
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briefly. This applies to message cancellation, fossil collection, performance
measure computation, and load balancing.

Forwarding, execution, and cancellation of rollback messages work effec-
tively when implemented as described above, and circular rollbacks are im-
possible. However, there are several approaches in the literature, which aim
at more efficient solutions. The rollback-optimal solution presented in [334]
(see page 203) has been adopted for the implementation of our approach. This
required to store more elaborate information about valid and canceled time
intervals in the atomic units, which is outside the scope of this text.

The amount of storage used for state and event lists of the atomic units
grows as the simulation progresses, which is known under the term limited
memory dilemma [102]. Jefferson [183] observed that there exits a safe time
(or global virtual time) at any step of the simulation, such that all local states
which are earlier than this time are confirmed and will never be invalidated
by a rollback.

State and event information in the atomic units are thus not needed any
more, if their associated time stamp is older than the safe compound simu-
lation time cstSafe . A standard centralized technique [283] is used to obtain
cstSafe . A selected node, in our case the first node of the cluster which also
starts the main simulation process, requests the oldest unacknowledged mes-
sage of each atomic unit. The protocol ensures that there is no pending mes-
sage which would result in a rollback behind this time. The safe time is the
minimum of the received times, and is broadcasted to all nodes. Every atomic
unit can then discard the past of all local lists to save memory, which is called
fossil collection

∀au ∈ AU do EvListau := FutureEvListau

cstSafe

StListau := FutureEvListau

cstSafe

The fossil collection never removes events such that LastBefore becomes
invalid.

The computation of performance measures is done as follows. They can
be associated to an atomic unit in which the state variables or actions reside
which contribute rate or impulse rewards to them. Another possibility would
be to form additional atomic units which only contain performance measures.

In any case, all state variable changes and action executions that con-
tribute to a reward measure have to be forwarded to the managing atomic
unit, to compute intermediate reward results as it is done in Algorithm 7.4
(SteadyStSimulation). This is efficiently done at the time of a fossil collec-
tion: All discarded events and states are final, and can be used for a measure
computation. It is not practical to compute intermediate values before, be-
cause the values could be invalidated by a rollback later on.

The final goal of the overall approach is a distributed simulation of SDES
models with an automatic load balancing. The fine-grained model partitioning
described in Sect. 9.1.1 is an important prerequisite. Atomic units manage
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their local data structures independently, and can thus be migrated from
one computing node to another one easily. The logical processes only need
to update their information about the mapping of atomic units and logical
processes, and the data structures of the migrating au have to be transferred
efficiently. The underlying message passing protocol has to update its routing
information as well.

The migration of atomic units has already been implemented in the soft-
ware environment TimeNET. Different heuristics are currently investigated
for the decision when an atomic unit should be migrated and to which log-
ical process. Such an algorithm could relate to the time difference of logical
processes between global safe time and local au simulation times. A logical
process with a local time close to the safe time seems to be a bottleneck,
and should give away one of its atomic units to a logical process that has
a very high local time. Communication overhead should also be taken into
account; past message exchanges can be used as an approximation. Atomic
units that exchange a lot of messages should obviously be located in the same
logical process. Another issue to be resolved is the frequency (or reaction time
and sensitivity) of migrations, because thrashing could occur otherwise, i.e.,
atomic units migrate between nodes back and forth all the time. Correspond-
ing heuristics are the topic of current work [212].

9.2 Simulation of Models with Rare Events

There are many examples of technical systems in which the designer is inter-
ested in the performance under failures, or the probability of reaching a state
of potential catastrophic behavior. If a quantitative model of such a system ex-
ceeds the restrictions of symbolic or numerical analysis techniques, simulation
is the only applicable evaluation method. Very low probabilities of reaching
a state of interest requires a vast amount of events to be generated. This
case is called rare event simulation due to the low ratio of significant samples
with respect to the overall event number. There are numerous applications in
which probabilities in the range of 10−8 or less need to be quantified. Standard
simulation methods are not applicable in practice because they would require
prohibitively long run times before achieving statistical accuracy. Variance re-
duction techniques such as control variables, common random numbers, and
others do not solve this problem, because it may easily happen that no sig-
nificant event is ever generated in an acceptable time.

Several approaches have been investigated in the literature to overcome
this problem; overviews are e.g., given in [141, 147, 159, 160, 237]. They have
the common goal to make the rare event happen more frequently in order to
gain more significant samples out of the same number of generated events.

Importance sampling [144] changes the model in a way that lets the rare
event happen more often. Its main drawback is that it usually requires deep
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insight into the model, and is thus considered to be useful for simple models
only [147].

The second main technique for rare-event simulation is importance split-
ting, which has been introduced in the context of particle physics [191] and
later used in simulation [23]. Its underlying idea to generate more samples of
the rare event is to follow paths in the simulated behavior that are more likely
to lead to an occurrence of the event. It thus requires an algorithm to decide
which paths to take and which to discard; Sect. 9.2.1 briefly shows how this
is usually done.

There are two different approaches in the literature, one under the name of
splitting [140, 141] and the other called RESTART [317, 318,320,321] (which
is short for repetitive simulation trials after reaching thresholds). Splitting is
applied to estimate the (small) probability of reaching a set of states out of
an initial state before the initial state is hit again. It requires the system to
return to this state infinitely many times. RESTART is considered to be less
restrictive than splitting with respect to the types of performance measures
to be computed. Moreover, measures can be estimated both in transient and
steady-state. It has been extended significantly in [321] by the authors that
introduced this version of splitting techniques. The application to arbitrary
models (e.g., in a software tool or a model framework such as SDES) is easier
because it can use the model as a black box, as long as the measure of interest
is defined as described below.

We consider the RESTART method out of the mentioned reasons here; its
implementation for SPN models in the software tool TimeNET (cf. Sect. 12.1)
is used for the application example considered in Chap. 14. The technique is
explained in Sect. 9.2.1, and its application to the simulation of SDES models
covers Sect. 9.2.2 including an algorithm.

9.2.1 The RESTART Method

Assume that the goal of a simulation is to estimate the probability P{A}
of being in a set of state A in steady-state, and that significant samples are
generated only rarely due to the model. Let the set of all reachable states of
a model be denoted by B0, and the initial state of the system by σ0. This
situation is sketched in the Venn diagram in Fig. 9.5.

A standard simulation would require a very long run time until A has been
visited sufficiently often to estimate P{A}. The idea of importance splitting
techniques in general is to let A be visited more frequently by concentrating
on promising paths in the state set. The line in Fig. 9.5 from the initial state
into A depicts one possible “successful” path. A standard simulation would
usually deviate from this and take paths leading “away” from A. If we can find
a measure of “how far away” from A a state is, it becomes possible to decide
which paths are more likely to succeed and should be followed more frequently.
Such a measure can often be deduced from the actual application: rare failures
may be the result of a continuous wear-and-tear, and unavailability or losses
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B1

. . .

state set B0

rare state set
BM = A

B2

initial state σ0

Fig. 9.5. State sets and paths in a rare-event simulation with splitting

due to blocking happen after a buildup in buffers. Corresponding regions of the
state set with increasing probability of reaching A can then be defined. The
samples resulting from such a guided simulation must of course be corrected
by the ratio with respect to the probability that the path would have been
taken in a standard simulation.

Formally, define M subsets B1 . . . BM of the overall state space B0 such that
A = BM and BM ⊂ BM−1 ⊂ . . . ⊂ B1 ⊂ B0

The conditional probabilities P{Bi+1 | Bi} of being in an enclosed set Bi+1

under the precondition of being in Bi are much easier to estimate than P{A},
because every one of them is not rare if the Bi are chosen properly. The mea-
sure of interest can then be obtained from the product of the conditionals.22

P{A} =
M−1∏

i=0

P{Bi+1 | Bi}

States that are visited during a simulation must be mapped to the respec-
tive sets Bi. An importance function fI returns a real value for each state.
Guidelines on how to choose such a function are given in [320].

fI : B0 → R

A set of thresholds (denoted by Thr i ∈ R, i = 1 . . .M) divides the range of
importance values such that the state set Bi can be obtained for a state.23

∀i ∈ {0 . . .M} : Thr i+1 > Thr i

σ ∈ Bi ⇐⇒ fI(σ) ≥ Thr i

22 Obviously P{B0} = 1.
23 We assume Thr0 = −∞ and ThrM+1 = ∞ here to simplify notation.
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Setting of threshold values is discussed later. We say that the simulation is in
a level i if the current state σ belongs to Bi \ Bi+1.

Level(σ) = i ⇐⇒ Thr i ≤ fI(σ) < Thr i+1 (9.16)

An importance splitting simulation measures the conditional probability
of reaching a state out of set Bi+1 after starting in Bi by a Bernoulli trial.
If Bi+1 is hit, the entering state is stored and the simulation trial is split
into Ri+1 trials. The simulation follows each of the trials to see whether
Bi+2 is hit and so on. A trial starting at Bi is canceled after leaving Bi

if it did not hit Bi+1. Simulation of paths inside B0 and BM = A is not
changed.

An estimator of P{A} using R0 independent replications is then [140,310]

P̂{A} =
1

R0R1 . . .RM−1

R0∑

i0=1

. . .

RM−1∑

iM−1=1

1i01i0i1 . . .1i0i1...iM−1

if we denote by 1i0i1...ij the result of the Bernoulli trial at stage j, which is
either 1 or 0 depending on its success.

The reduction in computation time results from estimating the conditional
probabilities P{Bi+1 | Bi}, which are not rare if the sets Bi are selected prop-
erly. Even more computational effort is saved by discarding paths that leave
a set Bi, and which are therefore deemed unsuccessful. The optimal gain in
computation time is achieved if the sets are chosen such that [321]24

M = −1
2

ln(P{A})

P{Bi+1 | Bi} = e−2

Ri ≈
1

P{Bi+1 | Bi}
= e2

It should be noted that the optimal conditional probabilities as well as number
of retrials do not depend on the model.

The numbers of retrials Ri can only be set approximately, because they
have to be natural numbers. Apart from that, the optimal setting of the
RESTART parameters for a given model and performance measure is not
trivial. The first problem is that, following the equations above, the final
result needs to be known before the simulation has been started. The second
problem is how the importance function and especially the thresholds should
be set. The problem of finding good thresholds is e.g., discussed in [310,320].
Finally, even if the optimal settings are known, the model structure might
require to set e.g., different thresholds.

24 Later results of the same authors [319] recommend an alternative setting such
that P{Bi+1 | Bi} = 1/2, if it is possible to set the thresholds dense enough.
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However, even if the optimal efficiency might not be reached easily, ex-
periences show that the technique works robustly for a wide range of appli-
cations [318, 319]. If it is at least possible to specify the optimal number of
thresholds, they should be set according to

minimize
M−1∑

i=0

1
√

P{Bi+1 | Bi}
subject to

M−1∏

i=0

P{Bi+1 | Bi} = P{A}

which means that every P{Bi+1 | Bi} should be chosen as close as possible
to e−2. The advantage of RESTART compared to standard simulation ac-
tually becomes bigger for lower probabilities of visiting A, and speedups of
several orders of magnitude have been reported. Formulas for the asymp-
totical speedup to be achieved with a RESTART simulation using optimal
parameters are derived in [318,319].

Several variants of RESTART have been considered in the literature [118].
We follow the approach taken in [198, 310], which can be characterized as
fixed splitting and global step according to [118]. The first aspect corresponds
to the number of trials into which a path is split when it reaches a higher
level. The second issue governs the sequence in which the different trials are
executed. Global step has the advantage to store fewer intermediate simula-
tion states. Following [194], it is also possible in a global step RESTART to
adjust thresholds during the simulation, which overcomes the disadvantage of
possibly setting fixed nonoptimal thresholds.

Following the presentation in [310], the steady-state value of our example
measure P{A} is for a standard simulation given by

P{A} = lim
T→∞

1
T

∫ T

0

1A(t) dt

if we denote by 1A(t) the indicator variable that is either one or zero, depend-
ing on whether the current state of the simulation at time t is in A.

An estimator for this steady-state measure for a RESTART implementa-
tion needs correction factors that take into account the splitting. We adopt
the method of [310], where weights ω are maintained during the simulation
run, which capture the relative importance of the current path elegantly.

The weights are computed as follows: A simulation run starting from the
initial state σ0 ∈ (B0 \ B1) has an initial weight of 1, because it is similar to
a “normal” simulation run without splitting. Whenever the simulation path
currently in level i crosses the border to an upper level u, the path is split into
Ru paths, which are simulated subsequently. The weight is obviously divided
by Ru upon splitting. Paths leading to a level < i are discarded, except for the
last one, which is followed further using the stated rules. The weight of the
last path is multiplied by Ri when it leaves level i downwards. The weights
of the previously discarded paths are thus taken back into consideration, to
maintain an overall path probability of one. This procedure is repeated until
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Fig. 9.6. Simulation runs in a RESTART algorithm

the required result quality is achieved. This technique has the advantage of
allowing “jumps of levels” over more than one threshold with respect to the
original method.

Figure 9.6 depicts a sample evolution of a RESTART simulation with three
thresholds. Every path that crosses the border of a threshold upwards is split
into two paths in this example; the ones that drop below a threshold are
canceled, unless they represent the last trial.

Based on the weight factors, an estimator for the steady-state probability
of A is

P̂{A} =
1
T

∫ T

0

ω(t)1A(t) dt (9.17)

with a large T . T counts in this context only the time spent in final paths,
i.e., in the last path of each split.

9.2.2 RESTART Simulation of SDES Models

Approaches in the rare-event simulation literature estimate the probability of
a rare state set A in transient or steady-state. This is, however, a significant
restriction in the context of SDES. We apply the RESTART technique in the
version described in [310] to the simulation of SDES models here, and extend
it such that a complex SDES reward measure as defined in Sect. 2.4 can be
estimated.

When we transfer the RESTART method to SDES models, B0 is given
by the set of all reachable states RS of such a model25. Instead of es-
timating P{A}, the goal is to obtain an estimation of a reward variable
rvar� specified as described in Sect. 2.4.1. This extension is useful for all

25 Compare Sect. 7.1
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performance measures that significantly depend on rewards gained in ar-
eas of the state space which are only visited rarely. For simplicity of nota-
tion, we restrict ourself to one measure which is assumed to be analyzed in
steady-state.

Following the notation in Sect. 2.4.1, the reward variable rvar� is then
characterized by lo = 0, hi = ∞, ravg� = True (steady-state, averaged). The
“rareness” of event sets that are significant for a measure are obviously related
to individual reward variables; it would thus only make sense to estimate
several measures together if they depend on similar rare state sets. Otherwise
it would be hard to find an importance function and thresholds that are
meaningful for both.

Using the definition of the value of an SDES reward variable rvar� given
in (2.2) leads to an estimator r̂var� in the sense of (9.17).

r̂var� =
1
T

∫ T

0

ω(t)Rinst
�(t) dt (9.18)

where T is the (sufficiently large) maximum simulation time spent in final
paths, and Rinst

�(t) denotes the instantaneous reward gained at time t which is
derived by the simulation, and ω(t) is the weight as managed by the algorithm
and described in Sect. 9.2.1

An importance function fI : Σ → R for SDES states needs to be spec-
ified together with threshold values Thr i that correspond to the different
levels (or subsets of RS ). There is no method known yet that obtains an im-
portance function automatically for general models such as SDES (see e.g.,
the discussion in [310] and the references therein). In many model classes
it is however easy to find one for the modeler. If for instance in a queuing
model a high number of customers in a particular queue is seldom reached,
lower numbers of the same value are natural thresholds. In the case of a
reward measure defined as the probability that a certain number of tokens
is exceeded in a place of a Petri net, an automatic method is for instance
known [195, 198]. In the following, we assume that thresholds are either
specified by the user or obtained with a set of presimulations, as it is e.g.,
done in the implementations of SPNP [310] and TimeNET [198]. They can
even be adjusted during the simulation run without wasting the previous re-
sults [194].

The RESTART method for SDES models is started with RESTARTSim-

ulation shown in Algorithm 9.6. Its input is the SDES model to be simulated,
and a single reward variable rvar� as a part of it. The initial state of the simu-
lation is set with the initial SDES state and empty activity list. Accumulated
reward and simulation time start with zero. The actual simulation function
RESTARTPath is called with level zero26 and weight one. The call returns
when the stop conditions are reached; the estimation of the performance mea-
sure is finally computed. It should be noted that SimTime is not the sum of

26 We assume that Level(σ0) = 0 for simplicity.
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RESTARTSimulation (SDES)

Input: SDES model with performance measure definition rvar�

Output: estimated values of performance measures rvar�
i ∈ RV �

(∗ initializations ∗)
for ∀sv i ∈ SV � do σ0(sv i) := Val0

�(sv i)
ActivityList := ∅
t0 := 0
Rewardrvar� := 0

(∗ call path simulation ∗)
(·, ·, SimTime) := RESTARTPath(0, 1.0, σ0, ActivityList, t0)

(∗ compute performance measure ∗)
Resultrvar� :=

Rewardrvar�

SimTime

Algorithm 9.6: Startup of RESTART simulation

all simulated time spans as in a standard simulation. It equals the simulation
time spent in all final paths, compare (9.18).

Algorithm 9.7 implements RESTARTPath, the actual simulation of a
path in the RESTART approach. The two functions are divided mainly to
allow recursive execution of the latter. The main simulation loop is an adapted
copy of Algorithm 7.4 for the standard steady-state simulation, thus only the
differences are explained here. Its parameters include RESTART-specific level
and weight as well as the complete state of the simulation itself, namely state,
activity list and simulation time. This is necessary to start simulation paths
at splitting points. The reward that is accumulated in a state and upon state
change is multiplied by the weight factor ω, to compensate for the splitting
procedure.

Level control according to the RESTART rules and (9.16) is done at the
end of the loop. If the next state is on a higher level lvl ′ than the current
simulation state, the path is split into Rlvl′ paths that are started with re-
cursive calls to RESTARTPath. Each new path starts at the current new
state, with a weight ω divided by the number of paths. The final state of the
simulation that is reached with the last of the paths is followed thereafter by
copying the returned state information.

The main simulation loop repeats until a new state belongs to a lower level;
the current path is then aborted by a return to the upper level of recursion. In
addition to that, some stop condition depending on the simulation time or the
accuracy achieved so far is used. Corresponding formulas for the estimation
of result variance in a RESTART simulation can be found in the literature,
see e.g., [318, 319].
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RESTARTPath (lvl , ω, σ, ActivityList, t)

Input: Level lvl , Weight ω, state σ, activity list, time t
Output: Final state of the simulation: new (σ, ActivityList, t)

(∗ main simulation loop ∗)
repeat

(∗ get new activities ∗)
UpdateActivityList(σ, ActivityList, t)

(∗ select executed activity ∗)
(a,mode, t′) := SelectActivity(ActivityList)
Event := (a,mode)

(∗ update performance measure rvar� = (rrate�, rimp�, ·, ·) ∗)
Rewardrvar� += ω ∗ ((t′ − t) ∗ rrate�(σ) + rimp�(Event)

)

(∗ execute state change ∗)
t := t′; σ := Exec�(Event, σ)

(∗ RESTART level control ∗)
lvl ′ := Level (σ)
if lvl ′ > lvl then (∗ split ∗)

for i = 1 . . .Rlvl ′ do (σ′, ActivityList′, t′) :=
RESTARTPath(lvl ′, ω

Rlvl′
, σ, ActivityList, t)

(∗ Continue the final path ∗)
σ := σ′; ActivityList := ActivityList′; t := t′

until (lvl ′ < lvl) or (stop condition reached, e.g. t ≥ MaxSimTime)
return (σ, ActivityList, t)

Algorithm 9.7: Main RESTART algorithm for steady-state simulation

Notes

Section 9.1 is based on joint work published in [209–211,348]. The distributed
SPN simulation implemented in TimeNET has been described in [196, 197,
213].

There is an immense number of publications on distributed simulation.
Some books covering the subject include [15, 17, 115, 151, 332]. Different al-
gorithms for the distributed simulation of Petri net models are compared
in [252]. Recent results in this area are reported in [116,330]. An overview of
distributed simulation algorithms can be found in [114,280].

Section 9.2 draws on the application of the RESTART method to the
example of Sect. 14, which has been published in [346,347]. More recent results
including the treatment of extended reward measures are reported in [357,358].
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The evaluation of examples is based on a Petri net application of RESTART
in the TimeNET software tool [195, 196, 198]. Other implementations of
the RESTART technique include SPNP [310] for stochastic Petri nets and
ASTRO [317]. Importance sampling techniques are, e.g., included in SAVE
[148] and UltraSAN [253, 254], the latter for stochastic activity networks.
Different ways of implementation and their characteristics are compared
in [118], and an overview of software tools for reliability is given in [189].

References to literature relevant to RESTART have been given in Sect. 9.2
already. Recent treatments of its theoretical background can be found in
[318–320]. Surveys of the more general field of rare-event simulation include
[141,147,159,160,237].
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System Optimization

During the design of a technical system, one of the basic tasks is to choose
between different options, such that an optimal behavior is achieved as closely
as possible. Optimization is the problem of finding specific parameter values
for a given system such that an optimal behavior is reached. It is a key issue
in the design of complex technical systems because even comparably small
performance improvements can lead to huge savings. This chapter presents
an efficient optimization technique based on stochastic Petri net models.

Parameters (or decision variables) are values in the model, such as a ma-
chine speed, a buffer capacity, or the number of pallets, that have some degree
of freedom in the design and need to be decided. We denote the number of
those parameters for a specific optimization problem by D in the following.
Each parameter set x thus consists of D elements x1 . . .xD, which are as-
sumed to be real values for simplicity x ∈ R

D. Actual parameters may be
integers, real values, or enumerations, all of which can be mapped to a real
number. The search space X of possible solutions thus has D dimensions,
and is constrained by the restrictions of the parameters xmin and xmax such
that

X = {x | ∀i ∈ {1, 2, . . . , D} : xmin
i ≤ xi ≤ xmax

i }

The goal of the optimization is to find a parameter set x for which the de-
signed system behaves in the best way. To define how good a certain behavior
is, an optimization function (or cost/profit function) needs to be specified.
It returns a real value cost(x) for a parameter set x. Any of the methods
described in Part II for the quantitative evaluation of a model can be used
to compute the result. Throughout this chapter it is assumed that the value
of this function should be minimized. If in later chapters a profit function is
used, it is clear that the maximum should be found.

Equation (10.1) depicts the optimization task in mathematical terms. The
parameter for which the minimum cost is achieved corresponds to the optimal
set of decision variable settings.
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Optimal cost = minimum cost(x)
subject to xi ≥ xmin

i ∀i ∈ {1, 2, . . . , D}
xj ≤ xmax

j ∀j ∈ {1, 2, . . . , D}
(10.1)

The subsequent section describes why only indirect optimization tech-
niques are applicable for the kind of system we are interested in. There are
several methods available for this task, of which simulated annealing has been
chosen here. The underlying idea and algorithm is explained in Sect. 10.1.1.
The problem is, however, that because of the number of required evaluations
runs, the overall computational effort is very high.

The aim of the work presented in Sect. 10.2 is to reduce this computa-
tional cost, which is done by dividing the optimization into two phases and
the fast estimation of performance measures. The first phase, fast preopti-
mization, tries to get a reasonably good initial solution very fast. The cost
function is approximately computed using performance bounds as explained in
Sects. 10.2.2 and 10.2.3. The second phase, fine grain optimization, is started
once the fast preoptimization is finished. The aim of this phase is to improve
the approximate solution found in the first phase using an accurate perfor-
mance measure computation. It can be considerably accelerated due to the
initial starting point. The overall speedup typically reaches about two orders
of magnitude.

More technical information about the method can be found in Sect. 12.1.
Application to an example and the achieved efficiency is demonstrated in
Sect. 13.

10.1 Indirect Optimization

The cost function in the sense that has been used above may look like a
simple mathematical formula. For the examples that we are interested in here,
it is in fact not. It has to incorporate all possible effects of parameters and
requires the parameterized system model as well as a quantitative evaluation
technique. Such an evaluation may be quite complex in itself, as has been
shown in Part II. From now on we will denote by a cost (or profit) function
only a quantitative measure of an SDES model. The dependence of the model
will not be explicitly mentioned, because only the changeable parameters are
of real interest. Section 13.3 for instance covers profit function elements for
the example application area of manufacturing systems.

The optimization problems arising for discrete event system design can
be solved using evaluative techniques, leading to an algorithm with iterative
computations. Generative techniques obtain a solution directly for a given
cost function and set of constraints. Among the latter are problems that fit
into well-known mathematical programming templates like linear program-
ming problems. The algorithms that are available for these optimization prob-
lems are in practice very efficient and mature. They unfortunately require to
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describe the dependency of the cost function from the parameters and the
model itself in a linear algebraic way.

Models of complex technical discrete event systems are nonlinear in prin-
ciple. This is especially the case for selection problems where parameters
determine different system layouts, strategies, or machine types. The rela-
tion between parameters and cost function value can not be described as a
linear equation. It requires a quantitative evaluation by analysis or simula-
tion. Thus only an evaluative method can be used. The optimization algo-
rithm iteratively generates new parameter sets and controls the search for
the optimum. Formally speaking, it is not an optimization in mathematical
terms, but a heuristic search for a near-optimal parameter set. It is, however,
possible to show that the real optimum will be found with some statistical
probability.

Typical optimization problems involve integer, boolean, and real variables
(compare, for example, the types of design issues in manufacturing systems,
Sect. 13.1). Modern optimization techniques are able to cope with these is-
sues. They approach the problem using some kind of search heuristic, among
which are tabu search [142, 277], genetic algorithms [119, 145], and simulated
annealing [2, 313, 314].

Figure 10.1 depicts the principal iterative optimization process of an eval-
uative method. The heuristic search generates new parameter sets for which
the cost function value is derived until a stop condition is reached. Simulated
annealing [2] is adopted here as the optimization technique. It is explained in

optimization

cost function
cost(x)

strategy

parameterized

parameter
set x

model

quantitative
evaluation

SDES model

profit value

Fig. 10.1. Indirect optimization
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more detail in the subsequent section. Other heuristic search techniques such
as the ones mentioned above could be used instead. The general idea of the
two-phase optimization method (cf. Sect. 10.2) as well as the approximation
technique for performance measures (Sect. 10.2.2) are not restricted to it.

10.1.1 Simulated Annealing

For the indirect optimization a heuristic method is necessary that guides the
search for a near-optimal solution. Simulated annealing has been chosen be-
cause of its robustness and applicability to mixed optimization problems in-
volving integer and continuous parameters. It is moreover known to be useful
in cases where local optima lead to problems with simpler algorithms.

A Monte Carlo simulation is a technique to explore a search space using
random moves that start from the previous point in the space. This method
was improved by the introduction of a “temperature” of the system, such
that the Boltzmann average of the system energy (based on the Boltzmann
distribution law of energy) can be obtained. This modified method is called
Metropolis Monte Carlo simulation [241] after its first author. It was orig-
inally used as an importance sampling technique for integral derivations in
statistical physics. The application of simulated annealing as a technique for
optimization was introduced in the early 1980s [206].

The algorithm is named “simulated annealing” because it imitates the
physical process of a hot material that cools down slowly, allowing the atoms
to assume a regular arrangement. This process is called annealing and leads
from a system at a high temperature (and thus in a highly disordered state
of atoms) to an ordered state. Crystal growing or production of hard glass is
a real-life example for this process, where irregularities can be avoided by a
proper high initial temperature and a sufficiently slow cooling.

In terms of an optimization, a state of the physical system corresponds to
a possible solution (i.e., a decision variable setting). The energy at the current
state is mimicked by the cost function value at that point. A state change is
a step to a neighboring solution in the search space, where the distance of
the step is randomly sampled based on a distribution that depends on the
current temperature. The distance is longer with a higher probability if the
temperature is high. Paths to intermediate states with a higher energy may
be followed by using a probabilistic Boltzmann acceptance criterion. Local
optima can therefore be escaped by temporarily accepting worse solutions.

The temperature decrease follows a cooling scheme, which acts as a control
parameter of the optimization and directly influences the tradeoff between
speed and probability of reaching the global optimum. The final result of
the process is a frozen state, which corresponds to the statistically optimal
solution of the optimization problem.

The speed of the algorithm for a given computational complexity of each
cost function derivation is mainly determined by the temperature reduction
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scheme. The original method (called Boltzmann annealing) uses a temperature
for the kth annealing step according to the formula

Tk =
1

ln k
T0 (10.2)

It has been shown that for this temperature scheme the global minimum of
the cost function is statistically found. The weak point of this method is that
the scheme is quite slow. Improvements have been found that show how under
weak restrictions much faster cooling schemes are possible.

Fast annealing [301] uses a Cauchy distribution instead of the original
Boltzmann form, resulting in a temperature scheme

Tk =
1
k

T0 (10.3)

For the special case of finite known intervals of the parameters as in the
multidimensional optimization problems with D parameters that are consid-
ered here, an even faster scheme can be applied. The so-called very fast an-
nealing [173, 174] uses a temperature scheme of

Tk = T0e−c k1/D

(10.4)

A freely available implementation of the latter [175] has been used for the
computations in this text.

Algorithm 10.1 SimAnneal shows how simulated annealing works. The
syntax follows the format introduced in Sect. 7.2.1. It is shown simplified for
one parameter x only to improve readability. The parameters are normally
vectors x with dimension D, and all variable accesses have to be performed
correspondingly. Additional exit tests are applied in actual implementations,
considering a maximum number of generated and accepted states or stop if
the cost improvement or acceptance rate become too small from parameter set
to parameter set. The recalculation of the temperatures are, e.g., done every
100 times that a new value is accepted and every 10 000 times a parameter
set has been generated. In the algorithm it is shown as if done every time for
simplicity.

The cost temperature T cost influences the probability with which worse
solutions are accepted. Its default initial value T cost

0 is 1. The parameter tem-
perature T par controls how far away from the last accepted parameter the
new parameter value is selected; the default starting value T par

0 is also 1. The
speed of “cooling down” the temperatures is controlled by the constant c. Its
default value depends on the number of parameters D and is, e.g., 0.115 (3.64)
for one (four) parameter(s). It is computed with TRatioScale = 0.00001 and
TAnnealScale = 100 in the applied algorithm [175].

c = − lnTRatioScale ∗ e− lnTAnnealScale/D (10.5)
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SimAnneal (x0, cost)

Input: Initial parameter x0, Cost function cost(·)
Output: parameter set xbest and cost value costbest of optimum

T cost
0 := T par

0 := 1
accepted :=generated :=0
xbest := xcurrent

costbest := cost(xcurrent)
loop

generated := generated + 1

if T par = T par
0 e−c generated1/D

< ε then exit

if T cost = T cost
0 e−c accepted1/D

< ε then exit
r := random[−1 . . . 1]
d := xmax − xmin

repeat

xnew := xcurrent + sign(r)T par
[
(1 + 1

Tpar )|2r−1| − 1
]

d

until xmin ≤ xnew ≤ xmax

costnew := cost(xnew)
if costnew < costbest then

xbest := xnew

costbest := costnew

δ := costnew − costcurrent

if δ < 0 or random[0 . . . 1] < e−δ/T cost

then
xcurrent := xnew

costcurrent := costnew

accepted := accepted + 1
end loop
return xbest

Algorithm 10.1: Simulated annealing for one parameter

10.1.2 Avoidance of Recomputations with a Cache

The computational effort for computing the value of the cost function cost(x)
from a parameter set x is high for our cases because every cost function is
computed by a simulation or numerical analysis of an SDES. For the stochastic
Petri net applications considered in Sect. 13.4, for example, the simulation can
take some minutes to complete, depending on the model complexity and the
confidence interval. During the first preoptimization phase this is not such
a big problem. However, a certain number of linear programming problems
have to be solved for every step, which is the computational bottleneck also
for this phase.

When the simulated annealing algorithm generates a new parameter set
to evaluate, no book-keeping of already searched areas is adopted (as, e.g.,
in a tabu search). Moreover, the “distance” between subsequent parameter
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sets statistically becomes very small when the algorithm comes to its end due
to a low temperature. The probability of evaluating the same or very similar
parameter set again is thus very high. Hence, the overall efficiency of the
optimization can be increased a lot by avoiding recomputations.

Every result that the cost function returns is thus stored in a cache-like
data structure together with its corresponding parameter set. The desired ac-
curacy of the overall optimization is used to check each parameter individually
to decide whether it is considered equal to a cached result. This is especially
necessary for real-valued parameters. If Δ1 . . .ΔD are the accuracies for the
D parameters x1 . . .xD, a parameter set x is considered to be equal to a set
y that is stored in the cache iff

∀i ∈ {1, 2, . . . , D} : |xi − yi| ≤ Δi

In this case the already stored result for y is adopted for x as well, assuming
that with sufficiently small accuracy ε

|cost(x) − cost(y)| ≤ ε

Section 12.1 covers the cache integration together with the implementation
details of the optimization algorithm. In the examples considered so far the
simple supplement of a cache to the cost function call lead to a reduction of
the computational complexity by almost one order of magnitude. Chapter 13
demonstrates results for an application model.

10.2 A Two-Phase Optimization Strategy

The main problem of model-based indirect optimization lies in the computa-
tional effort required for a series of long simulation runs. We propose a two-
phase optimization method that aims at finding an approximation of the best
parameter set during a fast preoptimization. Speed is more important than
accuracy during the first phase preoptimization phase. This phase is inspired
by ordinal optimization ideas [165]. Cost function values need to be obtained
using some fast approximation method. The idea of the two-phase optimiza-
tion can be combined with any efficient quantitative estimation method for
SDES.

An approximation technique for stochastic Petri nets using bounds on the
performance measures of the model has been developed and is taken for the
preoptimization phase. Petri nets enable the application of linear program-
ming techniques for the approximate analysis as shown in the subsequent
Sect. 10.2.2.

For the preoptimization phase the default initial parameters of simulated
annealing are used without changes. This results in a standard simulated
annealing procedure, for which with some statistical probability the algorithm
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will find (at least the area of) the global optimum. This “optimum” is of
course obtained for the approximated profit function, not for the original one.
During this step it is important that the region of the solution will be found,
while the accuracy of the result is not.

The second phase then takes as input the best parameter set of the
first one as the starting point of the optimum search. The cost function
derivation from the model and the current parameter set is done with a
standard performance evaluation technique, e.g., simulation as described in
Chap. 9. It can be accelerated significantly, because the promising region of
the search space is already known. The speed of the algorithm (leading to
the number of parameter sets for which the model has to be analyzed) de-
pends essentially on the temperature management. For an acceleration of
the second phase the following heuristic changes have been introduced (cf.
Sect. 10.1.1):

– The initial cost temperature T cost
0 is decreased from 1 to 0.1, thus reducing

the acceptance probability of worse solutions already at the beginning.
– The cooling speed control constant c is made smaller by reducing the

value of TAnnealScale from 100 to other values (20, 10, 5, 1), resulting
in a faster temperature reduction process. Depending on the parameter
space dimension D, c is thus adjusted such that only a certain percentage
of the originally generated parameter sets are being analyzed until the
temperature reaches the stop condition value ε.

An important question is when to change from the preoptimization phase
to the second one. As each calculation in the preoptimization phase takes
less than a second in our prototype implementation, the number of annealing
iterations during this phase does not play a big role for the overall effort.
Therefore, the default parameters have been used, resulting in a standard
simulated annealing procedure in the preoptimization. When the annealing
algorithm has reached its end, the second step is started with adjusted pa-
rameters and temperatures.

It should be noted that for the annealing algorithm the duration can be
more or less arbitrarily changed by choosing different temperature schemes.
However, the question is then how good the found solution will be. There is
obviously a tradeoff between speed and statistical accuracy. Simulation and
annealing both contain stochastic behavior that makes it hard to exactly
assess the general quality of the heuristic temperature settings. However, the
examples considered in previous papers [281, 351–353] as well as in Sect. 13
show that the method leads to significant speedups for temperature settings
that are still robust.

The following sections show how quantitative measures can be approx-
imated to obtain an estimation of the cost function. Section 12.1 contains
more implementation-oriented information about the two-phase optimization
method.
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Fig. 10.2. Small Petri net example

10.2.1 Preliminary Notes on Petri Nets

We first recall some basic structural properties of Petri nets that are used
in the sequel to make the text self-contained. The example model shown in
Fig. 10.2 is used in the following to explain formulas and intermediate results.
Firing weights of immediate transitions are annotated as numbers, while for
timed transitions the rate λ of the exponential distribution or the deterministic
firing time τ is shown.

Remember that the pre- and post-incidence functions of a Petri net, Pre
and Post, map pairs of transitions and places to the respective arc cardinality,
possibly depending on the current marking (cf. Sect. 5.3). We assume in this
chapter that the arc cardinalities are not marking-dependent. In that case Pre
and Post can be interpreted as matrices with dimension |P | × |T | containing
natural numbers. Matrices Pre and Post have the following values for the
example in Fig. 10.2:

Pre =

⎛

⎜
⎜
⎝

1 0 0 0 0
0 1 1 0 0
0 0 0 2 0
0 0 0 0 1

⎞

⎟
⎟
⎠ Post =

⎛

⎜
⎜
⎝

0 0 0 2 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎞

⎟
⎟
⎠ (10.6)

The token flow matrix C captures the flows of tokens between transitions
and places,1 and can be obtained from the incidence matrices.

C = Post − Pre =

⎛

⎜
⎜
⎝

−1 0 0 2 1
1 −1 −1 0 0
0 1 0 −2 0
0 0 1 0 −1

⎞

⎟
⎟
⎠

A marking vector m′ that is reached from a source marking m by firing
transition tk can thus be expressed by

∀i ∈ {1 . . . |P |} : m′[i] = m[i] + C[i, k]

1 Often called incidence matrix in the literature, although it only contains the full
structural information if the net is pure, i.e., does not contain self-loops.
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If we denote by σ ∈ N
|T | a vector that counts for each transition t of the

Petri net the number of firings that occured in some firing sequence starting
at the initial marking m0, the finally reached marking m is given by the state
equation

m = m0 + C · σ

It follows that if it is impossible to find a σ for a given m, this marking is
unreachable. This is, however, only a sufficient condition: for many Petri net
variants there are markings with a solution of the state equation, which are
not reachable. They are called spurious in the literature [293].

There are two important types of linear invariants that can be obtained
from the state equation. A vector y is called a P-flow2 iff

y ·C = 0 −→ y · m = y · m0 + y · C · σ = y ·m0 = constant

because the weighted sum of tokens specified by y for every reachable marking
m is constant (see e.g. [293]).

Nontrivial and nonnegative P-flows (i.e., if y ≥ 0) are called P-semiflows.
They correspond to conservative parts of a model, where tokens are neither
lost nor created.

It is possible to derive transition invariants similar to place invariants: A
vector x ∈ N

|T | is called a T-flow if the following equation holds.

C · x = 0 −→ m′ = m + C · x = m

A nonnegative, nontrivial T-flow is called T-semiflow, and describes multi
sets of transitions that, when fired in a sequence, always lead back to the first
marking. This does, however, not guarantee that such a sequence is in fact
always executable.

P- and T-semiflows are said to be minimal if there is no smaller P-semiflow.
An alternative condition is that there is no other semiflow of the same type
that has a strictly smaller support. The set of minimal semiflows is unique for a
model; it represents the basis of a vector space containing all P- or T-semiflows.
Efficient algorithm for their computations exist, see e.g. [73, 293,304].

The example shown in Fig. 10.2 has the following semiflows:

y1 = (1, 1, 1, 1) with y1 · m = 3
x1 = (2, 2, 0, 1, 0)
x2 = (1, 0, 1, 0, 1)

The number of tokens in the model is thus constant, and there are two minimal
firing sequences that always lead back to any originating marking: firing T1
two times, T2 two times, and T4 once as well as firing T1, T3, and T5.

2 Sometimes informally called Place invariant in the literature.



10.2 A Two-Phase Optimization Strategy 233

10.2.2 Computation of Performance Bounds

Stochastic Petri nets (cf. Chap. 5) are used as the modeling formalism for
the systems to be optimized. The computation of approximated quantitative
values can be done through several techniques, e.g., response time approxima-
tion [190, 260], where relatively accurate results are achieved with a compu-
tational effort that is still high. The goal of most approximation techniques
is not a faster computation, but to cope with models that are too complex to
be analyzed exactly.

Opposed to this, a rough computation of performance measures is suffi-
cient for the approach presented here. For certain classes of Petri nets, effi-
cient algorithms based on linear programming problems (LPP) exist for the
computation of upper and lower bounds of performance measures. In the fol-
lowing, we denote with χ+[ti] and χ−[ti] the upper and lower bound of the
real throughput χ[ti] of transition ti, and with m+[pi] and m+[pi] the up-
per and lower bound of the real mean number of tokens m[pi] in place pi in
steady-state.

Upper and lower bounds for the throughput of transitions as well as mean
numbers of tokens in steady-state can be determined based on a linear alge-
braic description of a Petri net that was introduced in the previous section
very briefly. The formulas are applicable to any kind of Petri net, but they are
more exact if the models are restricted to the class of FRT-nets (see below;
FRT stands for freely related T-semiflows). For the exact definition of FRT
nets the reader is referred to the references at the end of the chapter.

For an application of the following equations we thus restrict ourselves to
models with the following properties.

– The net has to belong to the class of FRT nets. This requires mainly that if
there are transitions in conflict, the probabilities of firing each of them has
to be computable from the net structure (as shown below). Hence conflicts
are only allowed between transitions that are in equal conflict relation,
that is, their pre-incidence function is the same: Pre[·, ti] = Pre[·, tk].
Additionally, there must not be different T-semiflows for which the relative
throughput cannot be computed from the net structure. This is, e.g., the
case in nets that are not connected. However, there are connected nets
that do not comply with this restriction as well. If for instance the routing
strategy for parts in a flexible manufacturing system model depends on the
current state of the subsequent machines, the algorithm is not applicable,
and less exact bounds can only be obtained.

– Conflicts are restricted to immediate transitions for the implemented algo-
rithm. This requires to separate conflict resolution and timing conditions,
which makes sense in many applications, but prohibits, e.g., modeling
of deadlines. Most net structures can be changed to comply with this
condition by adding immediate transitions before conflicting timed tran-
sitions. The firing probabilities corresponding to these additional transi-
tions can be computed from the mean firing times of the timed transitions.
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However, it is not easily possible to replace conflicts of timed transitions
if their firing delay is not exponentially distributed and they do not have
age memory firing policy.

– The net has to be structurally bounded and structurally life, which should
be the case for most correctly modeled systems.

– Priorities and inhibitor arcs are not allowed for the bounds computation.
By ignoring them a net could still be analyzed with the algorithm. There
would, however, be no guarantee that the actual values are inside the
computed range, making the results approximate and their exactness un-
known. While for some systems the use of priorities or inhibitor arcs is just
a way of expressing behavior conveniently, it is known that the description
power of Petri nets is improved by adding either one of them. However, for
the considered subclass of structurally bounded nets, it is always possible
to substitute them by adding some net elements.

– Timed transitions are considered as having infinite server firing semantic.
If a transition should have single (or fixed multiple) server semantic, its
firing parallelism can be restricted by adding net elements such that an
additional place invariant ensures this restriction.

The example of Fig. 10.2 does not violate any of the restrictions given above.
The model is a FRT net because it is completely covered by its two T-semiflows
(2, 2, 0, 1, 0) and (1, 0, 1, 0, 1). Moreover, the relative firing probabilities of the
structurally conflicting transitions T2 and T3 can be obtained from the net
structure as 0.3 and 0.7. The conflict between these two transitions, which
are in equal conflict relation, “connects” the two semiflows. Their relative
throughputs can thus be obtained directly.

The first step for the bounds computation is to calculate routing rates at
conflict of the Petri net system. For this we first consider all pairs of transitions
ti, tj , which are in equal conflict relation (denoted by EC(ti, tj)). This is
the case if their input arcs come from the same places and have identical
corresponding multiplicities, i.e., their pre-incidence function Pre is equal.

∀ti, tj ∈ T : EC(ti, tj) if Pre(ti) = Pre(tj)

It is obvious that a transition is in equal conflict relation with itself, and that
the relation is both symmetric and transitive. The relation is thus an equiv-
alence relation, which divides the set of transitions T into a set of nonempty
sets T1 . . . Tk of transitions, which have no common elements and together
form the set T . Every transition t belongs to exactly one of the sets Ti. For
the example shown in Fig. 10.2 the two immediate transitions T2 and T3 are
in equal conflict. The corresponding sets are {T1}, {T2, T3}, {T4}, {T5}.

Transitions that are in equal conflict may only be immediate ones follow-
ing the restrictions. Thus every timed transition is in one subset Ti on its
own, while immediate transitions may be part of a set with several elements.
Immediate transitions t have a firing weight W (t) associated to them, which
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uniquely defines the probability of their firing in our case due to the equal
conflict restriction.

The relative visit ratios of transitions are computed in the following. The
term v(1)[ti] denotes the number of times that transition ti fires in steady-
state in relation to transition t1. Note that the restriction of the method to
FRT nets is only due to the computability of the visit ratios for this kind of
nets [38]. The relative visit ratios between two transitions can be determined
easily if they belong to the same T-semiflow. It can also be computed if the
transitions are in equal conflict, i.e., belong to the same transition subset Ti.
In that case it is possible to find routing rates r that satisfy

∀Ti, ∀t1 . . . tk ∈ Ti :

r2v[t1] − r1v[t2] = 0
r3v[t2] − r2v[t3] = 0

. . .
rkv[tk−1] − rk−1v[tk] = 0

(10.7)

where rk denotes the relative routing rate at conflict of transition tk. These
rates are given in the model definition for the immediate transitions by their
weights (relative firing probabilities). They are computed iteratively following

r1 = 1; ri+1 = ri
W (ti+1)
W (ti)

(10.8)

because of the conflict solution probabilities that are given by the firing
weights.

Because of the definition of the FRT net class, all transitions are a member
of a T-semiflow, and all T-semiflows are related by relative visiting rates set by
the conflict probabilities. The vector of visit ratios v(1) is therefore uniquely
defined.

The homogeneous system of linear equations shown in the previous equa-
tion can be expressed in matrix form as R[Ti] · v(1) = 0, where R[Ti] is a
|Ti| × |T | matrix and combined to the routing matrix R:

R =

⎛

⎜
⎝

R[T1]
...

R[Tn]

⎞

⎟
⎠ (10.9)

The information that transitions belonging to the same T-semiflow need to
have corresponding visit ratios is added by extending the routing matrix R
by the token flow matrix C. This results in the following system of linear
equations normalized for transition t1:

(
C
R

)

· v(1) = 0, v(1)[t1] = 1 (10.10)

Solving this system of equations results in the visit ratios of all transitions of
the net with respect to transition t1. An important side effect of this com-
putation is the following: it can be shown that if the model belongs to the
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class of FRT nets, the above system of linear equations has exactly one sol-
ution [15, 38]. Hence if this is not the case for a specific net, it is clear that
the model is not FRT and the algorithm stops. An additional previous check
of the net, which would require a computation of the T-semiflows and their
conflict relations, is therefore not necessary.

The vector of visit ratios for the transitions in the example is obtained as
v(1) = (1.0, 0.3, 0.7, 0.15, 0.7). The correctness of these values can be easily
checked because for every firing of transition T1, transitions T2 and T3 fire
0.3 and 0.7 times due to their firing weights. Based on that it is obvious that
transition T5 fires as often as T3 does, while transition T4 fires once for every
two firings of T3.

Little’s Law (see p. 70) holds for stochastic Petri nets and can be applied
to each subnet of a model that consists of a timed transition t1 and (one of
its) input place(s) p. Remember that timed transitions are not allowed to be
in conflict. We denote in the following by m[p] the mean number of tokens in
place p, the average token waiting (or residence) time in p by r[p], and by χ[t1]
the throughput of transition t1. Applying Little’s Law (The mean number of
customers in a subnet is equal to the mean interarrival rate into it multiplied
by the mean delay to traverse it) to such a subnet leads to

m[p] = (Pre[p, ·] · χ) r[p] (10.11)
= Pre[p, t1] χ[t1] r[p] (10.12)

The equation also holds for immediate transitions, because then both the
firing time (and thus the token waiting time) as well as the marking is zero.

m[p] = r[p] = 0 (10.13)

It is obvious that the mean token waiting time r[p] in place p is at least
as long as the mean service time s of the output transition t1 (which is given
by its firing delay specification Λ).

r[p] ≥ s[t1] (10.14)

which can be inserted into (10.12) leading to

m[p] ≥ Pre[p, t1] χ[t1] s[t1] (10.15)

Pre[p, tj] = 0 for j �= 1 holds because there are no conflicting timed tran-
sitions. Thus

m[p] ≥
m∑

j=1

Pre[p, tj ] χ[tj ] s[tj ] (10.16)

Multiplication with the average interfiring time (the inverse of the throughput)
Γ [t1] = 1/χ[t1] leads to

Γ [t1]m[p] ≥
m∑

j=1

Pre[p, tj ] Γ [t1] χ[tj ] s[tj ] (10.17)
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and since Γ [t1] χ[tj] = χ[tj ]
χ[t1] = v(1)[tj ],

Γ [t1]m[p] ≥
m∑

j=1

Pre[p, tj ]v(1)[tj ] s[tj ] (10.18)

We define average service demands D
(1)

relative to transition t1 as

D
(1)

[ti] = v(1)[ti] s[ti] (10.19)

By multiplying the visit ratio with the service demand of a transition, a mea-
sure of the relative workload due to the transition corresponds to the service
demand. It should be noted that because of the dependence of the visit ra-
tios of the arbitrary selection of transition t1, the service demand vector also
depends on the selection of t1.

Service times and service demands for the transitions in the example of
Fig. 10.2 are s = (2, 0, 0, 4, 3) and D

(1)
= (2, 0, 0, 0.6, 2.1).

The service demands simplify (10.18) in matrix notation together for the
whole net to

Γ [t1]m ≥ Pre · D(1)
(10.20)

It can easily be checked that this equation holds for the case of immediate
output transitions as well because of

m[p] = Pre[p, ·] ·D(1)
= 0 (10.21)

Following the definition and properties of P-semiflows [73] we know that
y · m = y · m0 for all markings m of the Petri net reachable from the initial
marking m0. It can be concluded that for the average marking y ·m = y ·m0

holds. Using this together with (10.20) results in a lower bound for the average
interfiring time of transition t1:

Γ [t1] ≥ max
y∈{P-semiflows}

y ·Pre · D(1)

y ·m0
(10.22)

The search for a lower bound in (10.22) can be formulated as a fractional
programming problem:

Γ [t1] = maximum y·Pre·D(1)

y·m0

subject to y · C = 0
1 · y > 0

y ≥ 0

(10.23)

which can be rewritten because for life systems y · m0 > 0 holds:

Γ [t1] = maximum y ·Pre ·D(1)

subject to y · C = 0
y ·m0 = 1

y ≥ 0

(10.24)
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where y is a P-semiflow and C denotes the token flow matrix. Equation (10.24)
constitutes a standard linear programming problem (LPP), which can be
solved efficiently in practice. An interpretation of the LPP is to search for
the “slowest subsystem” among the ones defined by P-semiflows in isolation,
similar to a bottleneck analysis.

Throughput upper bounds χ+ can now be computed from the mean inter-
firing time Γ [t1] of t1

χ+[t1] =
1

Γ [t1]
(10.25)

The bounds for all other transitions are directly calculated from the result
and the relative corresponding visit ratios.

χ+[ti] = χ+[t1]v(1)[ti] (10.26)

The values computed for the example are shown and compared in Table 10.1
in the following subsection.

A pessimistic upper bound for the average interfiring rate of transition t1
is computed by assuming that the worst case for firing this transition again
is after having fired all other transitions the number of times that their visit
ratio specifies:

Γ [t1] ≤
∑

t∈T

v(1)[t] s[t] =
∑

t∈T

D
(1)

[t] (10.27)

which leads to obvious lower bounds χ− for the transition throughputs:

χ−[t1] =
1

∑
t∈T D

(1)
[t]

(10.28)

χ−[tj ] = χ−[t1]v(1)[tj ] (10.29)

Upper and lower bounds of transition throughputs are used to estimate the
throughput values χ� of the transitions as a part of the profit function es-
timation as shown in the subsequent section. Mean number of tokens m in
places need to be estimated as well, based on upper m+ and lower bounds
m− of the mean markings as described in the following.

Recall that for the mean interfiring times holds

Γ [t1]m ≥ Pre · D(1)
and χ[t1] =

1
Γ [t1]

(10.30)

which is also true if we exchange any transition ti for t1. The mean marking
m is thus constrained by

∀ti ∈ T : m ≥ Pre · D(i) · χ−[ti] (10.31)

and a lower bound m− can be obtained by using the maximum

m− = max
ti∈T

(
Pre · D(i) · χ−[ti]

)
(10.32)
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These lower bounds may be heuristically improved by substituting the esti-
mated throughput χ� for the lower throughput bound χ− in the formula as
explained in the subsequent section.

The next step is the determination of an upper bound of the mean marking.
Consider a P-semiflow y whose support includes place pi. Then

yT ·m0 = yT · m (10.33)

and thus

yT · m0 ≥ yi ·m[pi] +
∑

i�=j

yj ·m−[pj ] (10.34)

yi · m[pi] ≤ yT ·m0 − yT ·m− + yi · m−[pi] (10.35)

m[pi] ≤ m−[pi] +
1
yi

yT · (m0 − m−) (10.36)

An upper bound m+ for the mean number of markings m can thus be com-
puted for a place pi as

m+[pi] = minimum m−[pi] + y · (m0 − m−)
subject to y ·C = 0

y · ei = 1
y ≥ 0

with ei[k] =

{
1 for i = k

0 otherwise

(10.37)

Upper and lower marking bounds for the example are shown in Table 10.2
below.

A possible improvement of the marking upper bound can be found in the
special case of transitions tj with only one input place pi. Let K denote the
multiplicity of the arc going from place pi to tj. Little’s Law ensures that
the mean marking m[pi] of place pi is equal to the flow of tokens into the
place times the token residence time, i.e., the delay of transition tj in our
case (infinite server firing semantic). The flow of tokens is balanced in steady-
state, which means that the number of tokens flowing into the place must be
equal to the number of tokens flowing out of it. The token flow out of the
place obviously equals the arc multiplicity K times the throughput χ[tj ] of
transition tj . Thus

m[pi] = K χ[tj ] s[tj ] (10.38)
m+[pi] ≤ K χ+[tj ] s[tj ] + (K − 1) (10.39)
with K = Pre(pi, tj)

because (K − 1) tokens do not enable transition tj , while K might.
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10.2.3 Approximate Derivation of Profit Values

It is clear that χ− ≤ χ ≤ χ+ and m− ≤ m ≤ m+,3 and the approximated val-
ues χ� and m� should of course be within the range of their bounds as
well. The actual values for throughput and mean number of tokens are esti-
mated from the bounds after the latter have been computed using the methods
described in the previous section. The following weighted sums of upper and
lower bounds are therefore used.

χ� = α χ+ + (1 − α)χ− (10.40)
m� = β m+ + (1 − β)m− (10.41)

Experiments with numerous examples showed that the throughput upper
bound is much better (nearer to the actual value) in most cases. This is,
however, not surprising from the “trivial” formula of the throughput lower
bounds. Hence the value of α has been set to 0.9, which often results in a
reasonable approximation of the throughput.

For the examples considered so far, the marking bounds were in general
not very close to the actual values. No observation could be made whether the
upper or lower bound is systematically better. Therefore, β has been chosen
as 0.5, resulting in an equal importance of marking lower and upper bound.

It has already been stated that the lower bounds for the transition through-
puts are usually not very exact. The marking lower bounds are computed using
them and the marking upper bounds depend on the marking lower bounds.
Hence, the marking bounds are also not very tight in most cases. However, we
are mainly interested in a good approximation of the throughput and mean
marking. An approximation of the marking bounds can then be computed by
assuming that χ� (as computed in (10.40)) equals the correct throughput val-
ues. The bounds on the throughput that are being used in (10.32) and (10.39)
can then be substituted by χ�.

The mean marking approximations are not guaranteed to be within their
theoretical bounds after this change. If for instance values of χ� are bigger
than the actual throughput values, this technique leads to an overestimation
of the lower marking bound and an underestimation of the marking upper
bound. In extreme cases no result might be found for the LPP (10.32) be-
cause the system of equations is contradictory. The implemented algorithm
detects this case, adjusts the α value, and retries from the point where the
first approximation was adopted. By making α smaller, the approximated
throughputs are not bigger than the actual ones at some point, and the prob-
lem will be solved. This kind of problem did, however, not occur in any of the
examples that have been analyzed so far.

Applying the formulas to the example in Fig. 10.2 leads to a vector of
upper and lower bounds of transition throughputs. The obtained values are

3 If the heuristic improvement of the throughput approximation is not used, see
further.
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Table 10.1. Approximation of throughput values for the example

Transition
T1 T2 T3 T4 T5

Lower Bound 0.213 0.064 0.149 0.149 0.032
Upper Bound 0.566 0.170 0.396 0.396 0.085
Approximation 0.531 0.159 0.371 0.080 0.371
Real Value 0.465 0.140 0.326 0.070 0.326

Table 10.2. Approximation of mean marking values for the example

Place
P1 P2 P3 P4

Lower Bound 0.425 0.000 0.255 0.447
Upper Bound 2.298 1.872 2.128 2.319
Improved Upper Bound 1.132 0.000 1.679 1.188
Approximation 0.779 0.000 0.967 0.818
Real Value 0.931 0.000 1.090 0.978

shown in Table 10.1 together with the approximated value, compared to the
real value that was computed by numerical analysis. The throughput approx-
imation works very well for the example, the relative error is in all cases only
about 14%.

The same result analysis was done for the marking approximation of the
example. Table 10.2 shows the results. The quality of the approximation is
good, which among others is due to the improvement after (10.39) (see row
Improved Upper Bound). Relative errors range between 11 and 16% except
for the perfect value for place P2. The good approximation quality is based
on the very simple net structure, which keeps the approximation error small.

The approximation error is typically bigger for models with a high influ-
ence of synchronization, because waiting times are introduced, which are not
captured in the bounds equations.

Algorithm 10.2 ComputeApproximation gives an overview of the steps
that are carried out for an approximate computation of a cost function value
for a stochastic Petri net. Equation numbers that describe the basis of the
individual steps are shown in brackets.

The profit value as defined by a profit function can be computed based on
the estimated mean marking and throughput values. Section 13.2 shows for the
exemplary application area of manufacturing systems how typical profit func-
tion elements can be mapped on a Petri net performance measure. The math-
ematical terms of these profit functions can be approximated as shown above.
The approximation quality of the overall profit function value might suffer in
some cases from the different errors in the individually estimated elements.
The quality of the approximations is analyzed in Sect. 13.6 for an application
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ComputeApproximation (SPN)

derive C = Post− Pre and P-semiflows y
derive routing equations ri for conflicting transitions (10.8)
derive visit ratios v(1)[·] (10.10)

compute service demands D
(1)

[ti] (10.19)
solve LPP (10.24)
derive transition throughput upper bounds for ti (10.25), (10.26)
compute transition througput lower bounds (10.28), (10.29)
obtain place marking lower bounds (10.32)
for ∀pi ∈ P do

solve LPP (10.37) for marking upper bound
improve place upper bound if possible (10.39)

compute throughput approximation (10.40)
compute marking approximation (10.41)
return result approximation using throughput and marking results

Algorithm 10.2: Computation of approximate cost function value

example, and shows that a sufficiently good estimate for a promising region
in the optimization parameter space can be efficiently detected with the pre-
sented technique.

It should be noted that the approximation error of the profit value is not
important for the two-phase method as long as the multidimensional shape
of the real profit function is sufficiently well estimated. Let X denote the n-
dimensional solution space of all possible decision variable values x ∈ X of an
optimization problem with the given constraints. Any approximation function
Profit�(x) for the real profit Profit(x) would be perfect for our purposes if it
satisfied

∀x1,x2 ∈ X : Profit�(x1) > Profit�(x2) ⇐⇒ Profit(x1) > Profit(x2)

In that case the optimization running on the approximated values will come
to the same optimal parameter set, although probably not with the real
profit value.

Notes

The chapter is an extended presentation of joint work published in [351–353].
Additional heuristics for the further improvement of the two-phase optimiza-
tion methodology have been reported in Rodriguez et al. [281]. Among them
are temperature reduction schemes for the second phase that exploit the in-
termediate results of the first phase. Another proposal uses the two-phase op-
timization technique together with a simulation-based preoptimization phase,
and could thus be directly extended to any SDES.
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The method used to obtain the different performance measures involved
in the objective function is based on the results obtained by Campos et al.
[15, 37–40, 49, 261]. The computational effort is only linear in the size of the
net structure, and efficient solvers for linear programming problems are freely
available.
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Model-Based Direct Control

After a technical system has been modeled, its performance evaluated and
possibly improved, the final step is to bring the specified behavior into reality.
The model itself needs to be interpreted in order to create an interface to the
environment. Only one model should be used throughout the whole design
process. It is easily possible to integrate control rules in an SDES model.
Afterwards, the influence on the system behavior (liveness, performance) can
be analyzed. The behavior specified in the model is directly executed finally.

The control interpretation proposed in the following associates control
(output) and sensor (input) signals to transitions, which are exchanged be-
tween model and “outside world.” In the applications considered so far, this
approach turned out to be very natural in the Petri net understanding, and
did not require the exchange of state information. It is, however, easy to define
state inputs and outputs as well, as it is done in Sect. 11.2 for general SDES
models. For a state output, the most general way is similar to the definition of
a marking-dependent boolean expression, the result for which is available to
the environment. State inputs can be used in guard functions of transitions.

Many control-related publications explicitly distinguish between the con-
trolled system (often called plant or process) and the controller itself. The
plant model describes the uncontrolled behavior, i.e., all possible states and
state changes. The controller model is connected to the plant model such that
the intended behavior is achieved. This is often only defined as a set of for-
bidden states. There is a significant amount of literature about automatically
finding such a controller, which should have some properties like deadlock-
free operation and smallest possible restriction of behavior [100, 152]. With
the control interpretation described below it is also possible to describe plant
and controller independently, and to connect both models to check for the re-
sults. In a strict sense, input and output signals may then only be connected
to the plant part of the model. The generation of controller models is beyond
the scope of this work.

The chapter is structured as follows. A control interpretation for Petri
nets is explained using an example in Sect. 11.1. The transformation of the
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general idea for abstract SDES models is covered in Sect. 11.2, and some notes
are given about the influence of the control interpretation on the dynamic
behavior of the model. Related work is pointed at in the notes at the end
of the chapter. The control method is applied to a more complex example in
Sect. 16.4, and some implementation details are given in Sect. 12.1.

11.1 A Control Interpretation for Petri Nets

The discussion below applies to simple and colored Petri nets in principle.
It has been implemented for vfSCPN models in the TimeNET tool (compare
Sect. 12.1). The way of interpretation could, however, be easily transferred to
any kind of Petri net or even a general SDES model, see Sect. 11.2.

To allow the control of a real-world process using a Petri net model, pos-
sibilities for its interaction with the outside world have to be added to the
otherwise autonomous model. From the model’s point of view, input and out-
put signals are necessary. They should be added in a simple way, naturally
following the meaning of the model elements. This is possible without prob-
lems if the modeler follows the real structure of the system in the modeling
process.

Only “active resources” like machines, transport facilities, etc. are con-
trollable. Their activities are modeled by transitions, who can either move
tokens (transport) or change token attributes in a colored model (processing).
A transition becomes enabled when its guard function evaluates to true, the
necessary input tokens are available, and enough space for added tokens is free
in the output places (if they have a restricted capacity). This is the point of
time at which the firing time of the transition starts to run if the dynamic be-
havior is evaluated. The actual firing with the corresponding marking change
takes place when the firing delay has elapsed. It then appears to be natural
to assign controllable activities to transitions. When the transition becomes
enabled, a control signal (or output signal) is sent from the model to the tech-
nical process (e.g., a motor is switched on). After termination of the activity
(e.g., a sensor detects the stop position), a sensor signal (or input signal) from
the process is sent to the model, which then initiates the instantaneous tran-
sition firing. This model interpretation only changes the model behavior by
adopting the unknown delays of external activities. Therefore, results of the
qualitative analysis still hold, and quantitative results should be comparable
if the actual delays are similar to the modeled ones.

Transitions with associated input signals are called external, all others
internal. Associating control signal(s) to a transition does not change its firing
semantic in the model – a signal is sent to the outside world if the transition
becomes enabled, which does not influence the model itself. Opposed to that,
external transitions fire if and only if they are enabled and receive their sensor
signal. The firing delay specified in the model for an external transition is
thus ignored during the online control. The modeler should be careful with
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cases in which external transitions can be disabled by the firing of other
transitions, because their input signal could then be lost. Conflicts of this
type can be automatically detected from the model structure. However, they
are not generally forbidden, because there are cases in which this behavior is
useful.

It is possible to assign any number of input and output signals to a transi-
tion. All control signals are being sent when the transition becomes enabled,
while the arrival of any one of the sensor signals triggers the firing of the
transition. Transitions with output signals but without input signals (or vice
versa) are allowed as special cases. An example of an activity that can be
finished at any time without having been started before is the failure of a
machine or the arrival of a customer. A sensor that detects this event can
trigger the firing of an associated transition in the model. The firing time of
internal transitions keeps its semantics from the autonomous model. Timing
issues like delays or deadline violation detection can thus be easily achieved.

11.1.1 An Example

The control interpretation is explained using a ficticious example. Imagine a
street crossing over a waterway on a drawbridge, as it is sketched in Fig. 11.1.
For simplicity we assume a one-way street; vehicles approach from the left,
may be stopped at a traffic signal, and cross the bridge if the signal is off.
The drawbridge should work as follows: after 1 h of road traffic, the bridge is
opened for boats for 10 min. There is no dependency on the amount of traffic
or waiting boats to simplify the model. We furthermore assume that boats
just wait in front of the drawbridge and pass under it, always finishing within
the 10-min interval. Vehicle sensors are installed at both driveways to ensure
that the bridge is opened only if it is empty. The red signal may be switched

vehicles

boats

red traffic signal

vehicle sensor 1

drawbridge
vehicle sensor 2

Fig. 11.1. Drawbridge example
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BridgeEmpty RaiseBridge

RaisingWaitEmptyBridgeDown

VehicleTime

WaitForOn

VDepartureVArrival

NumVehicles

SignalOn

SignalOff BoatTimeLowerBridge

LoweringWaitForOff BridgeUp

TimeoutRaise

TimeoutLower Error

Fig. 11.2. Petri net model for the control interpretation example

on and off, and the drawbridge can be controlled by setting the motor to raise
or lower it. There is a stop-position sensor at the up and down positions.

Figure 11.2 depicts a possible simple Petri net model solution to the con-
trol task of the drawbridge example. The top part of the model describes
the arrival and departure of vehicles with timed transitions VArrival and
VDeparture, respectively. Both are external transitions and fire only when
the corresponding sensor signal is received from the real application. Provided
that the sensors work properly, the number of tokens in place NumVehicles
always equals the number of vehicles between the sensors.

The lower part of the model describes the bridge states and control ac-
tions. In the figure the initial marking has one token in place BridgeDown,
which is the case for 1 h (the firing time of transition VehicleTime) to al-
low road traffic. After that time has elapsed, the token is moved to place
WaitForOn, enabling transition SignalOn, and thus sending the associated
output signal to the traffic light. The transition has a firing delay of 1 s, which
allows for any delay internal to the traffic light. After that, immediate transi-
tion BridgeEmpty becomes enabled when all vehicles remaining on the bridge
have left it. This will eventually happen provided that no vehicle enters the
bridge after the signal shows red.

Now it is time to raise the bridge, which is done by transition RaiseBridge
with its output signal, switching the bridge motor on. The transition is ex-
ternal, i.e., its firing is triggered by a sensor signal coming from the “bridge
up position” sensor. The bridge status token is now in place BridgeUp, and
the time for boats passes during the firing delay of transition BoatTime. The
bridge is lowered and the red signal switched off afterwards in a similar way,
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Table 11.1. Transition details of the drawbridge control model

Transition Delay Control output Sensor input

VArrival External – Vehicle sensor 1
VDeparture External – Vehicle sensor 2
VehicleTime 1 h – –
SignalOn 1 s Red light on –
BridgeEmpty 0 – –
RaiseBridge External Raise bridge Bridge up position
BoatTime 10 min – –
LowerBridge External Lower bridge Bridge down position
SignalOff 1 s Red light off –
TimeoutRaise 5min – –
TimeoutLower 5min – –

arriving back at the initial marking from where the behavior starts again as
described.

For the case of a motor failure, the actions of raising and lowering the
bridge are monitored if they finish in time. Transitions TimeoutRaise and
TimeoutLower have a fixed delay of 5 min, which is assumed as a safe upper
boundary on any correct bridge movement. If the movement did not come to
an end during that time, i.e., the corresponding sensor signal did not arrive,
the timeout transition fires and puts the token into place Error. This stops the
bridge operation and could be used to signal the error state to a supervisor.

Table 11.1 summarizes transition details of the example. Every possible
combination of input and output signal attachments to transitions was used
in the example, as well as timeout supervision transitions.

11.2 Model-Based Control of SDES

In the general context of an abstract SDES model, the control interpretation
explained above for Petri nets can be applied as well. In the following the
interface between model and the “real world” environment is explained. Input
and output for SDES models is defined and its impact on the dynamic behavior
sketched afterwards.

There are four ways of possible information exchange between model and
environment: instantaneous signals and piecewise constant states, both for
the input and output direction. Because of the similarity between Petri net
transitions and SDES actions (and place markings and states), input and
output control signals are naturally associated with actions and their modes.
When an action (mode) becomes enabled, the associated output signal is sent
to the controlled system (if there is any). The sets of all output signals of
a model is denoted by SignalsOut and input signals by Signals In . To every



250 11 Model-Based Direct Control

possible action variant v = (a,mode) ∈ AV , there is an associated subset of
output signals Trigger (v) ⊆ SignalsOut , which are the ones that are activated
when that action variant becomes enabled. This subset can of course be empty.
The same mapping exists vice versa for input signals. There is no type or any
other elaborate information associated to a signal, it just happens at certain
time instants.

Trigger :

{
AV → 2SignalsOut associated output signals
SignalsIn → 2AV associated input signals

State information is exchanged between model and environment via state
inputs StatesIn and state outputs StatesOut . State inputs and outputs are
not attached to any individual model element as signals are. They always
have some value Value(·) depending on the current state σ ∈ Σ of the model.
Although in many cases a boolean type will be sufficient, we do not restrict
the state information. The value of a state output o ∈ StatesOut is given by
the evaluation of the associated function Value(o, σ) in a state σ as specified
in the SDES model, for which the sort must be fixed. We extend the SDES
sort function accordingly.

∀o ∈ StatesOut , σ ∈ Σ : Value(o, σ) ∈ S�(o)

The value of the state inputs depends on the environment state in a way that
is unknown inside the model. We only require the set of possible values to
restrict to some predefined sort, which must be the same for all observation
times t.

∀i ∈ StatesIn : Value(i, t) ∈ S�(i)

An action variant v ∈ AV is called external if there is at least one trigger-
ing input signal, i.e., if v ∈

⋃
i∈SignalsIn

Trigger (i). An enabled action variant
(i.e., activity) is executed when it is triggered by such a signal. This extension
of the Petri net concept described in the previous section to models with dif-
ferent action modes is not problematic, because in the simple standard case a
controllable entity may only be active under one mode and should therefore
be modeled with single server semantics. This ensures that there will be only
one activity at a time, resulting in a clear correspondence between controlled
resource and model activity. There are, however, cases in which a controlled
resource needs to be modeled with infinite server semantics, think, e.g., of
a machine that executes different processing steps depending on the type of
workpiece.

The definition of an SDES model that should be used to control an envi-
ronment thus needs to be extended as follows.

– The interface between model and environment needs to be specified first.
The sets of input and output signals and states (SignalsOut , SignalsIn ,
StatesOut , StatesIn) have to be defined.
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– Mappings between SDES model elements and interface parts have to be
set in a second step. State output functions Value(·, ·) map model states
to state outputs. Interactions between model actions and input/output
signals are specified using SignalsOut and SignalsIn .

For the Petri net example described in Sect. 11.1, no state information was
exchanged, leaving the corresponding sets empty StatesOut = StatesIn =
∅. The association of transitions to output signals and of input signals to
triggered transitions is listed in Table 11.1.

11.3 Behavior of a Control-Interpreted SDES

The dynamic behavior of an SDES model as defined in Sect. 2.3.2 is influenced
by a control interpretation. The behavior of the environment adds to the
previously independent model. Only the interface can be taken into account
for the behavior, because the environment is not directly visible from the
model. If we restrict the environment to a stochastic discrete event system,1

it can be understood as a model part with its own internal state and functions
that govern its state transitions as well as the emitted state information and
signals.

A full definition of the dynamic behavior of a control-interpreted SDES is
avoided here. In short, one possibility is to set the remaining activity delay of
external action variants to infinity when they become enabled. Execution of
such an activity then takes place only at the point in time when one of the
associated input signals arrives from the environment.

The main problem for the definition of the underlying stochastic process
is that events may happen in the environment that are thus unknown to the
model. In a real control application, the actual time of a signal from the
environment can not be known in advance. It thus makes no sense to use
remaining activity delays and the minimum of them to select the first activity
to be executed. The sojourn time in a state needs to be changed such that
it accounts for the first signal that arrives from the environment before the
current minimum RAD might have elapsed. Input state changes need to be
taken care of as well. This requires to insert an additional state of the discrete-
parameter stochastic process CProc every time that an input signal arrives or
one of the input states changes its value. All elements of the interface would
therefore need to be included in the process definition.

The way of handling output signals and state output should be obvious
from the definition of the dynamic behavior, especially because they do not
change the behavior directly.

1 As far as it can be seen through the interface, “invisible” continuous states are
allowed.
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Notes

A theory of discrete event system control based on automata and formal
languages was proposed in Ramadge and Wonham [273], see [274] for a survey.

Petri nets as an example of SDES have often been considered for the con-
trol of manufacturing systems [166]. The various approaches to interpret a
Petri net model for control use different methods to exchange information be-
tween model and environment. The use of places to output state information
to the controlled environment and transition enabling based on environment
information has been proposed in Silva [290]. A similar approach is taken in
GRAFCET [79,80] and related methods. The enabling of transitions that de-
pend on external information can also be done with control places [167]; the
models are then called controlled Petri nets. Another possibility is the associ-
ation of control procedures with transitions [234] or places [192]. However, the
internal behavior of the associated program parts can not be analyzed using
the model. An in-depth analysis of the different approaches and references is
contained in Zhou and Venkatesh [336], and a good introduction can be found
in Cassandras and Lafortune [42].

Colored Petri nets are used for the control of a manufacturing system,
e.g., in [192, 233]. In Feldmann [101], transitions modeling processing steps
are hierarchically refined and input/output signals are associated with the
subtransitions. Generally, control design based on a Petri net model is advan-
tageous with respect to a state machine description, because they are able to
capture parallelism in a much clearer way.

Places are proposed for state output and transitions for state input in other
work on control-interpreted Petri nets [214]. With the extension of state input
and output as described in Sect. 11.2, the exchange of information between
model and environment described here is similar to the interface understand-
ing of net condition/event systems [297].

This chapter is partially based on work previously published in [342, 344,
356]. The application of the proposed control interpretation to an example is
described in Sect. 16.4. Its implementation in the software tool TimeNET is
presented in Zimmermann and Freiheit [342] and briefly covered by Sect. 12.1.
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Software Tool Support

Modeling and evaluation of nontrivial technical systems are only possible in
practice with the support of appropriate software tools. A graphical user in-
terface should be provided to efficiently enter the graphical representations of
discrete event system models. The task of improving a model until it behaves
as expected can be supported by qualitative checks on the model as well as
by an interactive simulation or visualization of the behavior. Finally, evalu-
ation algorithms and other aspects such as code generation or direct control
have to be implemented. Modular algorithms and code reuse might become
more important in the future, especially with the Petri net markup language
(PNML, [27]) exchange format. Abstract model descriptions like SDES of this
text or the one used in the Möbius [81,82] software tool have the potential for
an integration of models and tools. Until then, however, most research groups
and obviously commercial companies design and implement a complete tool
individually, usually only for one specific model class.

This chapter briefly covers the software tool aspect in the context of the
SDES modeling environment. An overview of selected existing software tools
is given in Sect. 12.2. The subsequent Sect. 12.1 describes TimeNET, a soft-
ware tool that is being designed and implemented in the group of the author.
The techniques described in Part II of this text have been implemented in
TimeNET, and it has been used for the application examples presented in
Part III.

12.1 TimeNET

This section presents TimeNET, a software tool for the modeling and perform-
ability evaluation using stochastic Petri nets. The tool has been designed es-
pecially for models with nonexponentially distributed firing delays. TimeNET
has been successfully applied during several modeling and performance eval-
uation projects and was distributed to more than 300 universities and other
organizations worldwide at the time of this writing. Its functions are being
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continuously enhanced with the inclusion of results from Ph.D. theses at the
modeling and performance evaluation group of TU Berlin. Most of the imple-
mentation work is done by master students.

The development of TimeNET started around 1994. It was based on an
earlier implementation of DSPNexpress [227–229], which was also performed
at Technische Universität Berlin. It contained all analysis components of the
latter at that time, but supports the specification and evaluation of extended
deterministic and stochastic Petri nets (eDSPNs). The graphical user inter-
face was based on the X Athena Widget toolkit, and not easily adaptable
to extensions. It was completely rewritten in 1997 using the Motif toolkit to
capture several modeling environments within the same tool. Corresponding
extensions included variable-free colored Petri nets, fluid stochastic Petri nets,
discrete-time stochastic Petri nets, and modular blocks of SPNs, which were
added later on. Other extensions deal with specialized analysis algorithms
for existing model classes. A list of model classes and available evaluation
algorithms is given in Sect. 12.1.1.

Previous publications describing the tool TimeNET include [124,130,131,
197,199,213,345,349,359,360], and several applications have been considered
in [83,85,134,341,342,344]. References to publications covering analysis algo-
rithms and background of the tool are given in the section where appropriate.

TimeNET is in a transition phase at the time of this writing. Version 3
had been stable for some time now, while development of the next major re-
vision took place. TimeNET 4 [349] features a new graphical user interface
written in JAVA to allow platform-independent use of the tool. It is described
in Sect. 12.1.3. Another significant improvement is the availability of colored
stochastic Petri nets as described in Chap. 6. Not all model classes and evalua-
tion algorithms of TimeNET 3 have been integrated into the new architecture
by now. We describe the new version in the following, and point out differences
where necessary.

TimeNET runs under Solaris 5.9 and Debian Linux 3, and TimeNET 4
under Windows as well. The tool is available free of charge for noncommercial
use from its home page at http://pdv.cs.tu-berlin.de/~timenet, where
a user manual [362] can be found as well.

12.1.1 Supported Net Classes and Analysis Methods

Model classes and corresponding evaluation algorithms included in TimeNET
are briefly explained in the following.

The classic main model class of TimeNET are extended deterministic and
stochastic Petri nets (eDSPNs, cf. Notes on p. 96). Firing delays of transi-
tions can either be zero (immediate), exponentially distributed, determinis-
tic, or belong to a class of general distributions called expolynomial in an
eDSPN.1 Such a distribution function can be piecewise defined by exponen-
tial polynomials and has finite support. It can even contain jumps, making

1 Compare Sect. 1.4.
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it possible to mix discrete and continuous components. Many known distri-
butions (uniform, triangular, truncated exponential, finite discrete) belong to
this class.

Under the restriction that all transitions with nonexponentially distributed
firing times are mutually exclusive, stationary numerical analysis is possi-
ble [67, 132, 226] as described in Sect. 7.3.3. If the nonexponentially timed
transitions are restricted to have deterministic firing times, transient numer-
ical analysis is also provided [126, 161]. For the case of concurrently enabled
deterministically timed transitions, an approximation component based on a
generalized phase type distribution has been implemented [127]. If there are
only immediate and exponentially timed transitions, the model is a GSPN
and standard algorithms for steady-state and transient numerical evaluation
based on an isomorphic Markov chain are applicable (cf. Sect. 7.3.2).

Structural properties of eDSPNs like extended conflict sets and invariants
can be obtained with TimeNET. They are displayed and checked by the mod-
eler to examine the correct model specification [171, 344]. For a steady-state
or transient analysis of a simple stochastic Petri net model of any kind, the
reachability graph is computed (cf. Sect. 7.3.1). Structural properties are ex-
ploited for an efficient generation of the reachability graph [52,53]. Subnets of
immediate transitions are evaluated in isolation, following the ideas presented
in Balbo et al. [14].

The transient analysis of DSPNs is based on supplementary variables [123,
126, 161], which capture the elapsed enabling time of transitions with non-
exponentially distributed firing delays. TimeNET shows the evolution of the
performance measures from the initial marking up to the transient time graph-
ically during a transient analysis.

The tool also comprises a simulation component for eDSPN models [196],
which is not subject to the restriction of only one enabled non-Markovian
transition per marking. Steady-state and transient simulation algorithms are
available with the techniques described in Sect. 7.2. Results can be obtained
faster by parallel replications [197], using control variates [193], or with the
RESTART method in the presence of rare events [195, 198] as described in
Sect. 9.2. During the simulation run, intermediate results of the performance
measures are displayed graphically together with the confidence intervals.

The automatic optimization method described in Chap. 10 has been im-
plemented as a prototypical extension of TimeNET, which is not part of the
distributed version at the moment. More details can be found in the mentioned
section as well as [281,351–353].

Simple stochastic Petri nets in TimeNET can either be interpreted in con-
tinuous time as an eDSPN or as a discrete deterministic and stochastic Petri
net (DDSPN [337,343]). DDSPNs allow geometric distributions, deterministic
times, and discrete phase type distributions as delays. Steady-state and tran-
sient numerical analysis as well as efficient parallel simulation are available
for this type of model. The notes on p. 154 give an overview of the solution
methods.
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A TimeNET model class capturing UML Statecharts is currently under
development [307–309]. Such a model will then be translated into a stochastic
Petri net for a later evaluation as described in Sect. 3.5.

Variable-free colored Petri nets vfSCPN as briefly covered in Sect. 6.5 rep-
resent another model class of TimeNET 3.0. They were initially developed for
manufacturing systems [339–341, 344, 354, 355, 361], but later used for work-
flow systems as well [83–85]. Firing delays of transitions have the same range
as in eDSPNs.

Structure and work plans of a manufacturing system2 are modeled with
slightly adapted versions of vfSCPNs. Templates from a library of common
submodels can be parameterized and instantiated to ease the description of
large systems. Function blocks can be used to model a system instead [350],
which are later automatically translated into a Petri net. The separate models
of structure and work plans are later on automatically merged to a complete
model.

Qualitative analysis can be used to derive structural properties [171,344].
Different performance evaluation techniques are available for this net class in
TimeNET: numerical steady-state analysis as described in Sect. 7.3, the ap-
proximation method of Sect. 8, and standard simulation as covered in Sect. 7.2.
The modeled system can be directly controlled using TimeNET [342] with
the method shown in Chap. 11. A wavelet-based approach for the approxi-
mate numerical analysis of vfSCPN models with large state spaces is currently
investigated.

Online control of vfSCPN models is implemented in TimeNET 3.0 as fol-
lows: during a token game with activated control, an additional process mon-
itors the model state. If a state change enables a transition, the associated
output signals are sent to the controlled process. The sensor states are checked
additionally by the software process. The corresponding transition(s) are fired
when a sensor state change is detected, which is associated with an input sig-
nal. This is done only if they are enabled in the model, and leads to an update
of the displayed model state. Internal transitions (the ones without associated
input signals) may fire independently, only depending on their associated fir-
ing time. The correspondence between transitions and input/output signals is
described in a file. Data exchange between the software tool and the example
application (cf. Sect. 16.1) is realized via a RS 232 serial link.

Stochastic colored Petri nets as introduced in Chap. 6 have been added
recently to TimeNET version 4 [172, 331, 363]. Because of the inherent com-
plexity of the models, a requirement of only one nonexponential transition
per marking was decided to be too restrictive. Thus only simulation has been
implemented for the performance evaluation of SCPN models so far, following
the algorithms in Sect. 7.2. Currently the distributed simulation method intro-
duced in Sect. 9.1 is being implemented [209–211], which allows the efficient

2 Or structural and object-process related information for a model from another
application area.
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simulation of complex models on a cluster of workstations. Section 12.1.2
covers some details of the software architecture that became necessary for an
efficient evaluation of SCPN models.

Other features of TimeNET 3.0 include fluid stochastic Petri nets (FSPNs)
with steady-state and transient analysis algorithms [328,329], and SPNL mod-
els that combine SPN with concepts of modular programming languages [128].

The token game, i.e., an interactive simulation of the behavior of a model,
is available for all main model classes in TimeNET. Enabled transitions are
highlighted in the graphical user interface and are fired by clicking them with
the mouse. The state is updated and shown in the window.

12.1.2 Software Architecture of TimeNET 4.0

Software development for TimeNET is usually done by students as part of
their diploma or Ph.D. theses. It is thus of high importance to keep all anal-
ysis components modular with well-defined interfaces. The overall tool ar-
chitecture as well as the graphical user interface have to be extendable and
adaptable to new net classes and analysis algorithms. A major goal in the de-
velopment towards TimeNET 4 12.1.2 is platform-independency, in order to
allow Windows user’s access to the tool. It has thus been completely rewritten
in JAVA; more details are given in Sect. 12.1.3. Efficient computations are the
main goal for analysis algorithms, which are therefore implemented in C++.

The remainder of this section briefly describes the software modules in-
volved in a sequential simulation of SCPN models (cf. Chap. 6 and Sect. 7.2)
as well as the optimization of SPN models (Chaps. 10 and 5) as examples for
the software architecture. Other parts of TimeNET’s software architecture
are explained in some of the publications that have been mentioned at the
beginning of Sect. 12.1.

The main constituents of TimeNET are the graphical user interface (GUI)
and analysis algorithms. The latter are usually started as background pro-
cesses from the GUI, but can be run from the command line prompt as well.
Data exchange between GUI and analysis algorithms is mainly done with data
files, while sockets are used between processes for efficiency.

Figure 12.1 shows the interaction between programs for the simulation of
stochastic colored Petri nets. The model is edited with the GUI according to
the SCPN model class. Models as well as model class descriptions are stored in
XML format. The tool architecture allows to run the graphical user interface
on a client desktop PC, while the computationally expensive simulations run
on a remote server. Both parts may reside on the same host as well. This aspect
is implemented with some kind of a simple middle-ware, which is denoted as
remote system in the figure. It allows to start and stop programs, transfer
input and output data, and other functions independently of whether the
interacting programs are located on machines running Unix or Windows.

The program code implementing the SCPN transition’s functionality is
generated at the beginning of a simulation run by an automatic code generation
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Fig. 12.1. Software architecture for SCPN modeling and evaluation

module. This takes the model as input and writes functions for each transition
that has been changed since the last simulation. By doing so, efficiency of the
later simulation program increases substantially compared to a standard sim-
ulation that “interpretes” the model parts during the run. The resulting code
is then compiled forming a model-specific program, which is linked to a simu-
lation kernel to generate the actual simulation program. All this is done on the
remote simulation server. Because of the complexity and required adaptabil-
ity of SCPN models in a research project [331,363], a database can optionally
be combined with the tool to store model information. A SCPN model can
thus be parameterized using data from the database. The interface between
model generation and database follows the ODBC standard, thus allowing the
majority of modern data base systems to be connected to it.

The simulation program has two working modes: normal simulation, which
is intended for an efficient computation of performance measures, and a single
step mode used in conjunction with the GUI for an interactive visualization
of the behavior (token game). Results of the simulation run are graphically
displayed on the client PC during the simulation in a result monitor program
(see Sect. 12.1.3). They are also stored in files that can be analyzed after a
completed simulation.
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The implementation of the optimization technique described in Chap. 10
as a module of TimeNET is briefly explained now. It combines the user in-
terface of TimeNET for the specification of a model, an evaluation algorithm
like simulation, and a software package implementing the simulated annealing
method. We decided to use the ASA (adaptive simulated annealing [173,174])
tool for the latter, which can be used for optimizing multivariate nonlinear
complex systems. It is especially useful for adaptive global optimization of
complex stochastic systems. Another advantage is its adaptability to new ap-
plications by programming a cost function and specifying some additional
parameters.

Figure 12.2 sketches the interaction of the different program parts. Boxes
depict actions, ellipses data, and arcs show control and data flow. Dotted lines
correspond to steps of the second optimization step in contrast to solid lines for
the preoptimization. The box containing the interface procedure implements
the main algorithm for the interaction between ASA and TimeNET. Other
than that, only the initialization routines of ASA had to be reprogrammed for
the combined optimizer. Every result is stored in a cache-like table together
with its corresponding parameter set to avoid recomputations.

Before an optimization can be started, the model to be optimized and
some parameters like the decision variables and their search ranges have to be
specified. The model contains the definition of a cost or profit function as a
performance measure. During the simulated annealing algorithm a quantita-
tive evaluation algorithm for the underlying model is called with a parameter
set, for which the resulting profit function value is computed. In the next step
it is tested whether convergence is reached and if so the algorithm exits with
the final optimization result. A new parameter set is generated otherwise and
a subsequent iteration begins.

In the case that the parameter set has not been evaluated, the interface
procedure prepares a parameterized model from the original Petri net model
by substituting the actual parameter values in the model description. De-
pending on the optimization phase, either the approximation component or
the TimeNET simulator is called afterwards. For the computations of the
bounds, the software tool lp-solve is used for the solution of linear program-
ming problems. The resulting file with the computed value of the profit or
cost function is read by the interface procedure. The new value is stored in
the queue together with the parameter set and afterwards returned to the
ASA optimizer. In the next step, ASA tests whether convergence is reached
and exits with the final optimization result. A new parameter set is generated
otherwise and a new iteration begins. The computed optimal parameter set is
written into the configuration file for the fine-grain optimization at the end of
the preoptimization phase. Afterwards, ASA is started again for the second
phase with a new starting point and temperature adjustments as explained in
Chap. 10.
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12.1.3 A Model-Class Generic Graphical User Interface

The graphical user interface for TimeNET 4 has been completely rewritten in
JAVA and can therefore be run on both Unix- and Windows-based environ-
ments. The new GUI retains the advantages of the former one, especially in
being generic in the sense that any graph-like modeling formalism can be eas-
ily integrated without much programming effort. Nodes can be hierarchically
refined by corresponding submodels. The GUI is thus not restricted to Petri
nets, and is already being used for other tools than TimeNET. As a stand-
alone program it is named PENG, which is short for platform-independent
editor for net graphs [178].

Model classes are described in an XML schema file, which defines the
elements of the model. Node objects, connectors, and miscellaneous others are
possible elements. For each node and arc type of the model the corresponding
attributes and the graphical appearance is specified. The shape of each node
and arc is defined using a set of primitives (e.g., polyline, ellipse, and text).
Shapes can depend on the attribute value of an object, making it possible to
show tokens as dots inside places. Actual models are stored in an XML file
that must be consistent with the model class definition, which can be checked
automatically with library toolkits for XML. Editing and storing a model can
already be done after the corresponding schema is available.

Program modules can be added to the tool, which implement model-
specific algorithms. A module has a predefined interface to the main pro-
gram. It can select its applicable net classes and extend the menu structure
by adding new algorithms. All currently available and future extensions of net
classes and their corresponding analysis algorithms are thus integrated with
the same “look-and-feel” for the user.

Figure 12.3 shows a sample screen shot of the GUI during an editing
session of the model considered in Chap. 15. There are standard menus with
the necessary editing commands in the top row, e.g., File to open, close, save,
or create a new model. Commands under the entries Edit (cut, copy, paste,
undo, ...), View (grid, zoom, go up or down in the hierarchy, ...) and Window
(iconify, arrange, ...) should be self-explanatory and follow usual GUI style.
There is a set of icons below the menu bar where the modeler can access menu
commands which are most commonly used.

The main window contains the editing area. Models can be edited with
the left mouse button like using a standard drawing tool with operations for
selecting, moving, and others. There might be different windows opened at the
same time. The lower icon bar shows all model elements that can be added
in the model class. The contents of this bar are automatically derived from
the model class description of the currently opened model. Clicking one of
them changes the mouse pointer into a tool that creates the corresponding
object. Arcs are added by clicking and holding at the source element, and
then drawing the mouse to the destination.
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Fig. 12.3. Sample screen shot of the graphical user interface

Individual attributes of an element can be edited by selecting it in the
drawing area and then changing the values in the right tab. There is one
entry in this window for every object attribute as defined in the model class
for that object. Place OrderQueue is currently selected in Fig. 12.3, and the
attributes of a place are shown. The initial marking of a place can be specified
in the lower part of the right tab.

The dynamic behavior of a Petri net model can first be checked with an
interactive simulation, the token game. A background simulation without a
visualization can be started as well for SCPN models. Data exchange between
GUI and simulation takes place via the remote subsystem as explained earlier.
Once the actual simulation program is linked, it starts and initializes its in-
ternal information. The result monitor starts up as well. This JAVA program
runs on the user PC, receives all result measures from the simulation during
run time and displays them graphically in windows. A sample screen shot is
shown in Fig. 12.4.

12.2 Software Packages for Stochastic Discrete
Event Systems

Numerous commercial, research, and prototype software tools have been
developed for stochastic discrete event systems in the past; overviews are
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Fig. 12.4. Graphical result output

given in [156, 158, 306]. Most tools provide a graphical user interface for the
convenient drawing and editing of the model. They usually include analysis
components for one or several classes of models. The following list of brief
descriptions for tools related to our subject is by no means exhaustive.

Commercial general-purpose simulation tools do not necessarily use a for-
mal underlying model, but have their own kind of graphical or textual descrip-
tion language for systems instead. Graphical user interfaces allow to combine
predefined templates from libraries as building blocks. An example is the tool
Arena [200], successor of SIMAN. The simulation tool Visual SLAM [269] is
able to model discrete, continuous, and combined models. Another example
from this category is Extend [217]. Many simulation tools have been specially
designed for an application area like production systems or logistics.

Stochastic automata networks (SANs) are parallel and synchronized
Markovian stochastic automata. The PEPS software tool [266] analyzes large
SAN models analytically.

The StateMate tool [153,155] implements state charts modeling and eval-
uation, and is distributed by I-Logix. Other applications include model vali-
dation, test case generation, and code generation.
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Stochastic process algebra models (SPA) extend classic process algebra
models by assigning rates to activities. Smaller models can be composed
with operators. The underlying stochastic process is then Markovian, and
can be efficiently analyzed [138,162]. Modeling and evaluation of such models
is supported by the PEPA (Performance Evaluation Process Algebra) work-
bench [137].

Several tools exist for queuing models. PEPSY-QNS is the Performance
Evaluation and Prediction SYstem for Queuing NetworkS [30, 31]. The soft-
ware packege RESQME [45] was developed at IBM and is based on ext-
ended queuing networks. Utilization and average queue lengths are obtained.
A collection of tools for the analysis of QN models is QNA (queuing network
analyzer [325]) developed at AT&T Bell. It is able to approximately evalu-
ate general non-Markovian models. Selected software tools for the analysis of
queuing models are covered with more detail in [42].

A structured notation based on abstract data types and layered design is
used in the tool HIT [324].

Pointers to software tools for the performance evaluation of Petri nets can
be found at the Petri net home page [264].

GSPN models are graphically edited, analyzed, or simulated with the soft-
ware package GreatSPN [48, 51]. It provides a graphical user interface for
editing and evaluating generalized stochastic Petri net models. In addition
to GSPNs, stochastic well-formed nets (SWN) with colored tokens can be
evaluated. Symmetries in the reachability graph can be detected and lump-
ing techniques facilitate analysis algorithms with less computational effort in
many cases. Components for direct numerical analysis and simulation are con-
tained in GreatSPN. Algorithms for the computation of performance bounds
based on linear programming techniques have been added later.

The software package DSPNexpress [227, 228] provides a graphical inter-
face running under X11 and is especially tailored to the steady-state analysis
of deterministic and stochastic Petri nets (DSPNs). For the class of general-
ized and stochastic Petri nets, steady-state and transient analysis components
are available. A refined numerical solution algorithm is used for steady-state
evaluation of DSPNs [229], facilitating parallel computation of intermediate
results. Isolated components and isomorphisms of subordinated Markov chains
of deterministic transitions are detected and exploited. A recent update un-
der the name DSPNexpress-NG allows transient and steady-state analysis of
DSPN with two equally timed concurrent deterministic transitions, and the
evaluation of UML models.

The tool WebSPN [29] analyzes non-Markovian stochastic Petri nets
and has a web-enabled user interface. A discrete time approximation of the
stochastic behavior overcomes some of the restrictions for numerical analysis
techniques.

The software package SPNP [64, 164] has been developed at Duke Uni-
versity. It contains components for the transient and steady-state analysis of
stochastic reward nets (SRNs), which are comparable to GSPNs. Models are
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specified alphanumerically as C functions. Very general performance measure
specifications can be given and a sensitivity analysis module is available. Tran-
sient and cumulative reward measures are obtained using randomization. The
tool has been extended with a Tcl/Tk based graphical user interface, which
is referred to as iSPN. SPNP has been combined with other analysis tools in
an integrated framework called IDEA [113].

At the University of Arizona the software package METASAN was de-
veloped. The provided class of models is called stochastic activity networks
(SANs), a variant of stochastic Petri nets. The successor of the tool is known
under the name UltraSAN [75,285] (later developed at the University of Illi-
nois at Urbana-Champaign). It contains a graphical user interface and the
possibility of hierarchical model construction. Rate and impulse reward mea-
sures can be specified. Components for the transient and steady-state analysis
are provided. The algorithms can take advantage of symmetries by lumping
of states. SANs extended with deterministic delays can be analyzed in steady-
state. Transient and stationary simulation modules with importance sampling
for rare event handling are also available.

Colored Petri nets are supported by the CPN-Tools [24] (formerly De-
signCPN), offering a limited time model that is not compatible with the usual
understanding of time in SPN. Performance evaluation and stochastic delays
are not supported.

ALPHA/Sim [249] is a general-purpose, discrete event simulation tool with
Petri net support. ALPHA/Sim allows a user to graphically build a simulation
model, enter input data via integrated forms, execute the simulation model,
and view the simulation results within the graphical environment.

Object-oriented Petri nets are used in PNtalk [179]. Tokens are similar to
objects of a programming language in this class. Programming of transition
properties is, however, required and only simulation with simple statistics are
available.

Other approaches to tool implementations have been towards the integra-
tion of other tools in one common user interface and by combining the results
of the individual tools.

One example is the SHARPE tool (Symbolic Hierarchical Automated Re-
liability and Performance Evaluator [163, 282]). It can be used for specifying
and analyzing performance, reliability, and performability models. The toolkit
provides a specification language and solution methods, e.g., for fault-trees,
queuing networks, (semi-)Markov reward models, and stochastic Petri nets.
Steady-state, transient, and interval measures can be computed and used in
other models.

Models can be expressed as a combination of parts of different model
classes in other tools. Additional remarks on this topic are given in the notes
for the unified SDES model class at p. 42.

The software package HiQPN [21,22] has been developed at the University
of Dortmund. It uses the model class queuing Petri nets (QPNs) as well as their
hierarchical combination (HiQPNs), including colored Petri net tokens and
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queuing places. Several analysis techniques for the steady-state performance
evaluation are provided, namely decomposition approaches based on tensor
algebra. The hierarchical structure of the model is used for a structured des-
cription of the stochastic generator matrix. SimQPN [216] is a recent Java-
based simulator for this net class. Other tools that combine GSPNs and
queuing models are DyQN-Tool+ [157] and SMART [68,69], the latter includ-
ing solution techniques based on efficient storage. It implements SPN and QN
models but offers a textual user interface only.

The DEDS toolbox [20] allows to specify Markovian models as queuing
networks, GSPNs, and colored Petri nets. All model classes are transformed
into a representation in an abstract Petri net notation, which is then used by
evaluation algorithms.

The Möbius tool [72, 81, 82] is a multi-formalism, multi-solution software
tool, in which model classes as well as analysis algorithms can be combined.
This is done using an abstract model description similar to SDES of this
text. Its implementation is consequently done as an abstract functional inter-
face. The Möbius framework is able to integrate additional solvers that are
applicable to some of its model classes in a modular way, and thus relieves the
developers of prototype implementations from designing a complete tool from
scratch. On the other hand, it is possible to use existing evaluation algorithms
once a new model class has been described, with the abstract functional inter-
face. A significant point of Möbius is the possibility to combine model parts
from different classes. Möbius’ understanding of models, however, does not
allow for different action modes, which makes, e.g., colored Petri nets impos-
sible to handle. Another difference is that enabling degrees can be captured
with SDES. The graphical user interface of Möbius is not as easily adaptable
to new model classes. The model-level abstract description of Möbius has later
been extended by a state-level interface [86] using labeled transition systems
to efficiently accommodate different solution algorithms.
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Optimization of a Manufacturing System

The design of modern manufacturing systems is a complex task. High invest-
ments require that the planned system will fulfill the requirements. Moreover,
complex interleaving of choices and synchronizations in manufacturing sys-
tems may lead to paradoxical behavior. For example, increasing the number
of resources (i.e., tokens in a Petri net model) may result in a deadlocked sys-
tem, and replacing a machine for a faster one can decrease global productivity.
Methods and computer tools for the modeling and performance evaluation and
optimization of manufacturing systems are therefore important. Manufactur-
ing system design and operation is one of the fields where stochastic discrete
event systems are widely used; see the bibliographical notes at the end of the
chapter.

Direct optimization methods are not applicable for complex manufactur-
ing systems if a level of detail is necessary in the model that goes beyond the
first rough estimation steps in the design. Efficient methods based on a prob-
lem description as a linear programming problem are therefore unfortunately
not applicable. Models of complex manufacturing systems are nonlinear in
principle in addition to that. This is especially the case for selection problems
where parameters determine different system layouts, strategies, or machine
types. On the other hand, there are problems related to selecting the optimal
speed of a transport system, number of transport pallets, and the like. It is not
possible to guess the form of the function from a system model directly, which
would make simple standard methods (e.g., a gradient Newton search) appli-
cable. These restrictions lead to the application of heuristic search methods
for an optimization.

This chapter reports on an application example modeled with a generalized
stochastic Petri nets as described in Chap. 5, for which an optimal parameter
set is searched with the optimization method introduced in Chap. 10. Types
of manufacturing systems and typical design and optimization problems are
explained in the first two sections. Elements of the profit function that are
usually found in manufacturing systems are described with their specifica-
tion in a Petri net model in Sect. 13.3. The manufacturing system application
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example and its GSPN model are covered in the subsequent two sections.
Results for the example during the optimization algorithm of Chap. 10 are
given finally, namely by reporting the performance measure approximation
quality in Sect. 13.6 and the results and speedup of the two-phase optimization
method in Sect. 13.7. The chapter concludes with some bibliographical remarks.

13.1 Types of Manufacturing Systems

Manufacturing systems can be characterized by the general type they belong
to. Some important classes are explained later. More information on manu-
facturing system taxonomies can be found in [4, 32, 88, 89, 135, 270].

1. Production lines typically produce a low variety of products with a high
production volume. The machines and production cells are organized in a
sequence, which is guided by the flow of parts through the line. Issues to
be investigated usually include impact of unreliable machines and buffer
allocation.

2. Assembly/disassembly systems are sequentially organized for the different
intermediate parts and final products like a production line. However,
some resource sharing of machines is possible, such that competition takes
place. Another similarity is that the production volume is usually high,
while the number of different products is small. The main difference is
that assembly (or disassembly) operations are the most important ones. In
manycases onlyprefabricatedworkpieces thataredeliveredbya supplier are
assembled without further manufacturing steps. Assembly and disassembly
steps require the modeling of synchronizations (join) and splits (fork).

3. Flow shops are manufacturing systems where the main issue driving the
structure and operation is the flow of parts. There are typically some
different parts to be produced with some variations, but the overall set of
production routes (i.e., the order of production steps and where they are
executed) is fixed. However, the restriction of the sequential organization
of the machines as in production lines is relaxed. The setup of machines
and work places is a question of optimization depending on the flows of
parts. The machines must have some degree of flexibility because of the
different manufacturing steps that are executed on them. Setup times
should be low with respect to the production times.

4. Job shops can be found in production environments with a high vari-
ety of products and a low production volume. Different products, often
directly manufactured to the special needs of individual customers, can
be produced at the same time. Because of the amount of variety, there
are no sequential machines or fixed production routes. More important
than the optimization of machine placement (to minimize transports) and
production routes are flexible machines and production planning issues to
schedule the shared resources. Adaptable machines e.g., with tool changing
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possibilities and highly trained workers are necessary for the high degree
of production variety. Resource utilization might be relatively low, espe-
cially if individual products need to be finished fast after they have been
ordered.

5. Flexible manufacturing systems or short FMS aim at combining flexibility
and productivity in one system. They represent an integrated computer
controlled configuration of machines, production equipment, and material
handling systems. Material and parts can be transported by automated
guided vehicles (AGV), conveyors, or robots. The amount of manual work
places is minimal. An automated computer system on different levels of
hierarchy (such as plant level, cell level, machine level) is responsible for
the control of the FMS. A wide variety of products can be produced in a
medium production volume. The main advantage is the rapid adaptability
to new products.

13.2 Typical Design and Optimization Issues

Some of the design problems that frequently occur in the design of a manufac-
turing system are identified later. They usually involve the selection of one out
of several options, e.g., a size decision, machine, or material handling system
selection. Numerical values can be discrete like the size of a buffer or continu-
ous like a production mix. In practice, mixtures of these problems have to be
considered in an optimization. Manufacturing system optimization character-
istically deals with complex nonlinear evaluative models in high-dimensional
search spaces. Typical design problems are:

– Facility selection problems cover examples like: should a faster machine
with a higher initial investment and maintenance cost be bought? Is it
preferable to select a machine with a better failure/repair behavior over a
cheaper one? Very basic structural alternatives are for instance related to
the selection of a material handling system. In a production line, conveyors
might be the only alternative, but automated guided vehicles could be
better in a more flexible setup.
There are usually advantages and disadvantages connected to either one
of the alternatives. Every alternative has its own set of attributes (think
of the speed of a conveyor, the price of a robot, or the setup time of a
machine). All these values need to be included in the quantitative model
to be evaluated. For every selection issue, we need one decision variable
in the optimization problem. Such a variable is discrete and may assume
values that correspond to the individual alternatives of the selection (like
an enumeration). When the model has to be evaluated for a certain param-
eter set, the model attributes must be set according to the decision vari-
able value during an optimization. This is easy for numerical values like a
machine speed. Other alternatives require structural changes in the model.
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In the worst case, there needs to be one prefabricated model for any global
alternative, and thus for the cross product over all structural alternatives.

– Facility duplication might be useful in cases of bottlenecks where no faster
machine is available (or is too expensive). Another similar question is the
number of automated guided vehicles in a transport system setup. In any
case, decision variables of this type are natural numbers, which model the
number of resources that should be available in the manufacturing system.
The corresponding models can typically be adapted to such a number by
setting an initial number of tokens or selecting an appropriate degree of
internal parallelism in an activity.

– Placement problems appear when the layout of a manufacturing system
needs to be planned. It is related to both the physical placement (in the
plant layout) as well as the logical layout e.g., of a production line. Line
balancing for bottleneck avoidance is an issue for the latter. There are
algorithms that calculate good layouts starting from production routes and
volumes and corresponding transports. The overall impact of a layout with
corresponding transport times, buffer, and conveyor sizes is not easy to
calculate and requires an optimization of the global system. Placement of
machines and other production facilities is modeled indirectly via different
transport times and restrictions in a quantitative evaluation. One setup
leads to one model (or one parameterization of a model). It thus needs to
be handled like a selection problem.

– Buffer allocation deals with the question of how big intermediate buffers
in the manufacturing system should be (buffer sizing). If a zero size means
no buffer in the model, it contains the placement problem for buffers as
a special case. This question is often found in a manufacturing system
design. Additional buffer places might not be expensive, but can have a
big impact on production capacity, especially when machine failures are
significant. Buffering plays a major role also in the tradeoff between work
in process and time between order and delivery (related key words are just-
in-time supply vs. make-from-stock). Another design issue that is closely
related is the number of pallets (or any type of work piece container). Both
kinds of issues lead to decision variables that are natural numbers.

– Production mix is the question what amount of which products should be
produced in a manufacturing system. The relative production rates need
to be set such that the overall effect of different production and material
costs combined with the profits is optimal. Resource restrictions of the
manufacturing system as well as marketing constraints need to be obeyed.
The decision variables can be represented by nonnegative real values, which
model the production mix percentage or the individual production volume
per part.

– Production routes and work plans can be chosen in manufacturing sys-
tems with some degree of flexibility such as job shops and FMS. This is
a selection-type of design issue, because there is no meaningful way of
assigning numbers to the different alternatives.
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13.3 Profit Function Elements

A profit function has to be specified before an optimization can take place.1

Typical profit functions consider the money earned from selling finished parts
minus the costs arising from the production process. The price of raw parts,
the money spent for work-in-process, machine and transport systems amor-
tization, as well as utilization-dependent costs are examples. More complex
functions can capture human factors and costs as well. All of them are deter-
mined by an appropriate performance analysis of a model, although it might
not be obvious how reward variables can be specified for them. The complex-
ity of the profit function depends on the needs of the modeler and has to
include every significant influence. Selection of significant issues is similar to
modeling itself, it requires human expertise and can hardly be automated.

To evaluate the mean performance of a system during normal processing,
we restrict ourselves in the following to a steady-state evaluation.2 It is thus
clear that the absolute amount of profit gained depends linearly on the time
interval under inspection. For every profit result, we need to know the corre-
sponding amount of time. For the remainder of this section, let Δt be some
fixed time interval for which profit and cost are determined. This value would
for instance correspond to one week if we are about to evaluate and optimize
the profit per week. The optimal set of parameters, i.e., the values of decision
variables with the best possible profit result, would of course be the same if
a different interval had been chosen – only the absolute result changes. It is
further assumed that the manufacturing system produces N different parts.

A simple formula for the amount of money earned by selling finished parts
is then

Profitsell = Δt
∑

i=1...N

OutRatei ∗ SellPricei

if OutRatei is the output rate of parts of type i per time unit and SellPricei is
the price paid for one part i. This is only valid if we assume that the market
buys all finished parts and that the price is independent of the output. The
value of OutRatei is equal to the throughput of a transition in the Petri net
modeling the removal or output of parts of type i, or an action in an SDES
model that fires every time that such a product is finished.

An alternative formula can take into account that the price per part
drops if more parts are produced and sold. Some kind of market saturation
can thus be modeled. We assume that this behavior can be approximated
by an exponential function. This function converges toward an upper limit
MaxPricei, which is the maximum amount of money earned by selling any

1 The optimization literature often uses a cost function, which has to be minimized.
Both variants can obviously be transferred into each other, but profit maximiza-
tion is more appropriate for our application area.

2 Other transient issues could of course be optimized equally well with the method
described Chap. 10.
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number of parts of type i together. For the sake of simplicity, the different
parts are assumed to be independent. The resulting function has the form

Profitsell = Δt
∑

i=1...N

MaxPricei

(
1 − e−aOutRatei

)

The question is then how to adjust the factor a. If only one part is being
produced and sold, its price is (almost) not decreased by selling a large num-
ber of products. On the other hand, it can not exceed its theoretical value
SellPricei. Lets thus assume that the price gained per part is equal to its the-
oretical value at point zero of the above profit function. The derivative of the
profit function in point zero should hence equal the theoretical price per part.
For a fixed value of Δt, the following equations must then hold

SellPricei =
d Profitsell

d OutRatei
(0)

= MaxPricei

(
a e−aOutRatei

)
(0)

= MaxPricei a

And thus
a =

SellPricei

MaxPricei

After examining the money gained by running a manufacturing system,
different types of costs have to be subtracted for a total profit function. To be
able to manufacture and assemble new products, raw parts have to be bought.
For M different input parts, the amount of money spent is

Profitbuy = −Δt
∑

i=1...M

InRatei ∗ BuyPricei

Where InRatei is the input rate of supply parts of type i, which can be
measured as the throughput of a corresponding transition in a stochastic
Petri net model, and BuyPricei is the price to be paid for one raw part. It is
assumed that this price is independent of the number of parts bought. This
independent computation for buying and selling parts instead of a direct profit
calculation takes into account waste parts.

Another cost that has attracted much attention in recent years (e.g.,
Kanban systems) is the money spent for work in process. This position calcu-
lates the money bound to intermediate parts in the system. The current value
of the parts cannot be invested elsewhere during the time from buying raw
parts until they are finished and sold. Even if it is not necessarily borrowed
in reality, the cost is commonly calculated using some fictitious interest rate.
Because this rate is usually given for the period of one year, the function
relates this to the actual time interval Δt.

ProfitWIP = − Δt

one year
InterestRate

∑

i=1...L

MeanNumberi ∗ Pricei
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MeanNumberi is the mean number of parts of type i in the manufacturing
system in steady-state, which can be computed from the token distribution
probabilities of the model. The simplified formula used here does not take into
account the increasing worth of the different parts 1 . . . L during processing,
Pricei should be some useful mean value. For an intermediate part of type i
this will usually be in the range between the sum of BuyPricej of the parts
that are assembled up to now and the value of SellPricei.

In addition to the costs corresponding to the manufactured parts, the
manufacturing system itself requires initial investment and maintenance. The
investment costs Investmenti of a resource i are distributed over its lifetime
LifeTimei to calculate the amortization per time interval Δt for all K re-
sources.

Profitamort = −Δt
∑

i=1...K

Investmenti
LifeTimei

For facility selection and duplication problems, quality and speed of machines
as well as the number of AGVs and pallets influence this cost.

Some resources require more money when they are busy. Energy for ma-
chines, spare parts and tools, and others belong to this class of utilization-
dependent working costs.

Profitutil = −Δt
∑

i=1...K

Utilizationi ∗ VarCostsi

It is assumed that the variable costs VarCostsi of a resource i linearly depend
on its utilization Utilizationi. The degree of utilization can be computed from
the token distribution probabilities of a Petri net model by analyzing the
places that model the different states of resource i.

Constant working costs correspond to resources that need money no matter
whether they are used or not. In general, there are utilization dependent and
constant costs for each resource. Examples for the second are maintenance and
repair, worker’s wages, energy, and so on. General costs that do not belong to a
specific manufacturing system of a company like rent, insurance, management,
and others can be added here.

Profitconst = −Δt
∑

i=1...K

ConstCostsi

ConstCostsi gives the amount of money per time unit for resource i.
After specifying the different profit and costs, the overall profit can be

calculated as

Profit = Profitsell−Profitbuy−ProfitWIP −Profitamort−Profitutil−Profitconst

Whether or not all of these (and more specific) elements of a profit function are
necessary is a decision of the modeler. For the sake of simplicity, one can neglect
issues that are fixed and thus do not contribute to the optimal parameter set.
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This spares the work necessary to estimate or measure costs and profits that
are constant from the optimization standpoint. However, the absolute value of
the resulting profit will be different from the real value in that case.

13.4 A Manufacturing System Example

This section introduces a manufacturing system, which is modeled by a gen-
eralized stochastic Petri net (GSPN) below and to which the two-phase opti-
mization methodology presented in Chap. 10 is applied later on.

The example belongs to the class of flexible manufacturing systems (FMS).
It comprises a robot, an AGV system, and four conveyors for material
transport, two machines, one manual work place, and one assembly station.
Figure 13.1 shows a sketch of the layout.

Parts to be processed arrive in the input buffer. Each part circulates
through the system mounted on a pallet. The robot at the loading and unload-
ing station takes raw parts from the input buffer and places them on an empty
one. From the loading station, parts are taken to one of the two machines by
a transport system with automated guided vehicles. After being processed in
one of the machines, the work pieces are transported to the manual workplace
on the conveyor that belongs to the machine. Another conveyor takes them to
the assembly station, where additional parts can be assembled. The circle is
closed by the fourth conveyor, which transports parts back to the unloading
station. The robot can take a finished part from its pallet there and place it
into the output buffer. However, pallets are not necessarily unloaded at the
unloading station if the part mounted on them has to be processed further. In
that case the pallet is moved on to one of the machines as described earlier.

Two types of products, named here A and B, have to be produced using
the example FMS. Parts of type A can first be processed by any one of the
two machines. A manual operation and an assembly of an additional part

input
buffer

AGV
conveyor 2

conveyor 3

system
transport

robot

work place

loading and
unloading

buffer

output

conveyor 1

machine 1

machine 2

manual

conveyor 4

assembly
station

Fig. 13.1. Flexible manufacturing system example
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have to follow, before the product is finished. B-type parts are first processed
by machine 1. Afterwards, they are tested at the manual work place. Parts
that have been correctly processed are transported to the assembly station.
After an assembly operation the product is finished. However, five percent of
the parts have to be reworked at machine 1. Those parts are detected at the
manual work place, transported to machine 1 on the circle again, and can then
be moved to the assembly station for the remaining processing steps. Further
details of the example like the transport and manufacturing delays are not
covered here.

We consider the following design issues for the example:

– The number of pallets P available in the system (pallet allocation). More
pallets can lead to a higher throughput, but increase the work in process
as well as the initial investment and running costs. The model is evaluated
for pallet numbers from 2 to 30.

– The number of vehicles A of the AGV transport system in the range from
one to four (facility duplication). Additional AGVs should decrease the
waiting time of parts at the loading station and thus increase the through-
put. The disadvantages are comparable with the ones described earlier for
the number of pallets.

– Production route of part A is taken as a design issue. It is possible to
process parts of type A on either one of the two machines, while B-parts
are always processed by machine 2. The probability for a part of type A to
be transported to machine 1 by the AGV system is, therefore, considered
as a parameter.

– Finally, the production mix should be adjusted during the design. The
percentage of parts of type A is assumed to be changeable in the range
from 25% up to 80%.

The profit function is intended to compute the profit per day for the example
and contains the following elements. The profit per sold part is set to 2 (part A)
and 4 (part B) monetary units. Work in process costs are assumed to equal
10 monetary units per part in the system during one day. Amortization and
constant costs over time are assumed to be 2 000 plus 250 per AGV vehicle
and 20 per pallet for one day.

13.5 A Generalized Stochastic Petri Net Model
of the Example

A Petri net model for the example from the previous section is shown in
Fig. 13.2. Its basic layout follows the one shown in Fig. 13.1. The different
processing tasks (modeled by transitions) and parts in buffers (modeled by
tokens and places) had to be unfolded because of the use of simple Petri nets.
Model elements that belong to one machine, work place, the robot, or the
assembly station are highlighted with a grey background.
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Fig. 13.2. Petri net model of flexible manufacturing system

The robot at the loading and unloading station is described with the tran-
sitions RAi (short for robot, part A input), RBi (part B input), RAo, and RBo
as well as the surrounding places and immediate transitions. Immediate tran-
sitions are used to model the start of an activity and for decisions between
different possible tasks of one resource. The firing of one of the immediate
transition of the robot model takes away the token from place RC (short for
robot capacity), which otherwise models an available robot. Places that are
not modeling resource capacities are locations where parts can be inside the
manufacturing system. Actual locations usually correspond to several places
because of the mentioned unfolding.

The remaining parts of the shown model are similarly structured. Places
whose names end with C (for capacity) ensure that the resource restrictions of
buffers and machines is not exceeded. Elements with names starting by M1 and
M2 model the two machines, Man the manual work place, and As the assembly
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station. The small model part at the assembly station model with places BCC
and BC as well as transition InC models the arrival and storage of small parts
(of type C) that are assembled to parts A and B. Whether a part of type B has
been correctly processed is decided by the firing of the immediate transitions
ok and fail. The probability to be processed correctly or not (95% and 5%) is
defined with the firing probabilities of these transitions. Places and transitions
with names starting with IB model the input buffer, OB the output buffer, and
Agv the AGV transport system.

The four conveyors act as intermediate buffers between their connected
stations. Hence their names begin with a B followed by the number. The
number of AGV vehicles is set by the model parameter A, and P defines the
number of pallets. In general, model elements with trailing A (B) refer to parts
of type A (B). The production mix (one of the decision variables) can be set
with the relative firing probabilities of immediate transitions pA and pB. These
two immediate transitions are enabled when there is an empty space in the
input buffer, and their respective firing corresponds to the arrival of a raw
part of type A or B.

The individual transition delays are set according to the chosen example
values but omitted in this text. One second is equivalent to one time instant
of the model. The profit function for one day is set then up as a reward
variable of the model as follows. The profit from earned parts was set to 2 (4)
per part A (B) and can be specified using the throughput of finished parts
through transitions OutA and OutB. A conversion factor of 24∗60∗60 = 86 400
(seconds per day) is used. Work in process is related to the overall number
of parts in the system times the chosen factor of ten. This could be specified
based on the sum of token numbers in numerous places of the model. For an
easier specification, the place Pwip has been added to the model. The number
of tokens in this place equals the number of parts in the system. Constant
costs over time were 2 000 plus 250 per AGV vehicle (number is specified by
parameter A in the model) and 20 per pallet (number is specified as parameter
P in the model).

Finally, the complete profit function is defined as the following reward
variable of the example GSPN:

Profit = 172800TP{#OutA}+ 345600TP{#OutB}
−10E{#Pwip}− 2000 − 250 · A − 20 · P

where TP{#OutA} denotes the throughput of transition OutA, and E{#Pwip}
the expected number of tokens in place Pwip as explained in Sect. 5.1.

13.6 Profit Function Approximation Quality

The approximation techniques that are the basis of the optimization method
of Chap. 10 are applied to the FMS example model shown in Fig. 13.2 to in-
vestigate the approximation quality, i.e., its deviation from the real values.
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Hence, the model belongs to the class of FRT nets and can be analyzed ap-
proximately with the computation of bounds. The two basic types of approx-
imations, namely the estimation of transition throughputs and mean number
of markings, are considered first. An investigation of the approximation of the
complete profit function for the example follows.

Figure 13.3 shows a plot of the throughput of parts A (at transition InA),
comparing the different quantitative evaluation techniques considered during
the optimization. Simulated results are computed with a setting of confidence
interval and relative error to use them as the real values for the comparison.
As expected, simulated values as well as the approximated results are between
the computed lower and upper bounds. Both values are quite close, and the
shape of the functions is very similar. A numerical comparison of absolute
differences or relative error is omitted intentionally, because this would not
make sense for such a small and random part of the overall solution space.

For an evaluation of the approximated values for average markings,
Fig. 13.4 contains plots of the values computed by simulation and approxi-
mation for the mean number of tokens in place Pallets. The absolute values
computed by approximation are not very close to the simulated ones. The ex-
perience was the same with other examples: throughput approximations are
usually much better than the marking approximations. As already stated in
Chap. 10, this is due to the fact that the marking bounds and approximations
are computed using the throughput approximation, which already contains
some error. An exact approximation is, however, not necessary for our opti-
mization use, because only the shapes of the functions need to resemble each
other. This is the case also for the marking approximation. One could also
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Fig. 13.3. Throughput approximation of transition InA
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Table 13.1. Improvement of marking approximation quality

Throughput Marking
TP{#InA} E{#Pallets}

Approximation Improved appr.

Lower bound 0.0041 0.0000 0.0000
Upper bound 0.0199 9.0668 5.9081
Appr. result 0.0183 4.5334 2.9540

Simulation 0.0152 0.1774

say that the approximated values depend in a similar way on the changing
parameters as the simulated ones.

The mentioned better approximation quality of throughputs lead to the
idea to use the approximated throughputs in the marking approximation al-
gorithms as if they were the real values. This way of improved marking ap-
proximation is assessed for the example. Table 13.1 compares simulated and
approximatedvalues of the example for production mix 50%parts B, twoAGVs,
10 pallets, and a probability of sending parts of type A to machine 1 of 50%.

The approximated results are calculated from the bounds with α = 0.9
and β = 0.5. The throughput is not very close to its upper bound. The choice
of α = 0.9 is still too big, as the actual throughput value is smaller than
the approximated one. The error made in the throughput approximation is
about 20% for this particular case. The mean marking approximation for place
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Pallets is quite far from the actual value because upper and lower bounds
are not close together, and the simulated value is near to the lower bound.
The improved approximation method makes the result significantly better,
but the error is still big. In the case of the FMS example, the only marking
approximation needed in the profit function covers the work in process. The
influence of it on the profit function (and thus the approximation error) is not
very important, and therefore the approximate bounds computation does not
change the results significantly.

To check the quality of the approximation method further, the profit func-
tion has been computed using simulation and approximation for a selected
number of parameter sets that systematically cover the whole range of possi-
ble solutions. Because of the dimension of the parameter space, only selected
parts can be shown in the plots.

Figure 13.5 shows a plot of the profit function vs. the number of AGV
vehicles and the production mix in terms of parts B. Two different meshes
are drawn for results obtained by simulation and approximation based on
bounds. For the picture, the number of pallets is set to 12 and the probability
of parts A to be sent to machine 1 is set to 30%. The actual values are in the
range for which the optimal values are achieved with simulation. The shape of
the functions is quite similar – the main difference is that the approximated
profit is higher for one AGV, while simulation achieves the optimal result with
two AGVs.

The most important question concerning approximation quality for our
purposes is how far away the approximated parameter set is from the one
that is computed by simulation. Table 13.2 shows a comparison of the best
parameter sets for simulation and approximation using bounds for this ex-
ample. Approximation results of the profit function are quite different from
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Table 13.2. Results comparison for simulation and approximation

Parameter Simulation Approximation

Optimal Best 5% Optimal Best 5%

AGV vehicles 2 2.13 1 1.26
Pallets 8 10.57 6 11.63
Part B prod. mix 80% 80% 80% 78%
Part A to machine 1 10% 23% 10% 11%
Profit 6 397 6 153 8 717 8 445

the simulated ones. More important, however, is the very good approxima-
tion of where the global maximum can be found. The best simulated profit
of 6 397 for a systematic full search is achieved for two AGVs, eight pallets,
80% parts of type B, and a probability of 10% for parts of type A to be
sent to machine 1. The optimal setting of the decision variables based on the
approximated values is very close, the last two values are exactly the same.
For a broader perspective not only the point of the optimum was calculated,
but the mean parameter setting over all parameter sets for which the profit
value was within a 5% range off the optimum. The results are shown in the
table in the column “Best 5%”, and are also very close for approximation and
simulation.

As the approximately found parameter set is almost a neighboring solution
to the one found by exhaustive simulation, the preoptimization should be able
to find a very good starting point for the second optimization phase. However,
the simulated cost function value of 5 464 for the best approximated parameter
set reaches only 85% of the optimum of the simulated parameter sets. This
underlines the importance of the second fine-grain optimization step, although
the parameter sets are very close.

13.7 Results of the Two-Phase Optimization

After the general approximation quality investigation in the previous section,
results for the application of the two-phase method are shown here. Emphasis
is on the tradeoff between optimization result quality and speedup.

The application example was optimized using the standard simulated an-
nealing algorithm and the two-phase version for a comparison of the results
and run times. Each simulation run was executed with a quite high setting of
98% confidence level and 3% relative error. All computations were carried out
on a Linux PC with a 266 MHz Intel Pentium II Mobile Celeron processor.
The overall optimization needed 802min. Standard optimization results in pa-
rameter values as two AGVs, nine pallets, 79% parts B, and probability 22%
of parts A to machine 1. The profit value for this parameter set is calculated
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as 6 338. These results are in an acceptable range with the numbers calculated
during the scan of the whole parameter space.

Afterwards, the two-phase optimization was run. The preoptimization
phase only took 2 min to complete. One approximation typically needs be-
tween 1 and 2 s of computation time. The “optimal” parameter set is one
AGV, five pallets, 78% parts B, and a probability of 10% for parts A to ma-
chine 1. This again is within a close range of the full scan of the approximated
values as done in the previous section. The approximated profit value at the
optimal point of the preoptimization is 8 841, while the “real” profit value at
this point is 5 069.

The second optimization step is started with the final results of the preop-
timization phase as initial values. Table 13.3 shows results (best found profit
and corresponding parameter set, result value from simulation) and computa-
tion times for different selections of the optimization parameter TAnnealScale.
TAnnealScale influences the cooling speed of the simulated annealing, cf.
p. 227. The example shows that it is possible to make the cooling process
much faster without loosing significant result quality. However, there is of
course a limit on how fast the optimization can be made. It is interesting to
see that for TAnnealScale = 10, the second phase finds a better result than
for 20. This is due to the randomness in the underlying optimization and sim-
ulation algorithms. On the other hand, for TAnnealScale values of 5 and 1,
the fine-grain optimization was not able to find the better solution with AGV
vehicles equal to two. The simulated annealing process does not almost move
away from the initial solution for TAnnealScale = 1, resulting in a nonoptimal
parameter set. This shows that a significant speedup can be achieved, but the
heuristic choice of the faster temperature scheme is important. Experiences
from this and other examples show that a speedup by a factor around ten can
easily be reached without a significant loss in the result quality.

It should be noted that the computation time values in Table 13.3 in all
columns already contain the improvement of the algorithm by using a cache of
simulation results. The effect of the cache thus adds to the one because of the

Table 13.3. Tradeoff between speedup and result quality

TAnnealScale Standard Phase I Phase II

100 100 20 10 5 1

AGV vehicles 2 1 2 2 1 1
Pallets 9 5 8 9 10 6
Part B prod. mix 79% 78% 78% 78% 74% 78%
Part A to machine 1 22% 10% 13% 16% 10% 10%
Profit 6 338 5 069 6 267 6 326 5 575 5 388

Time (min) 802 2 135 89 38 14
Speedup (Ph. I+II) 5.8 8.8 20.0 50.0
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Table 13.4. Reduction of computational complexity by using the cache

Number of simulation calls

Exhaustive search 144 768
Standard simulated annealing 2 008
Simulated annealing with cache 274

two-phase optimization method. Table 13.4 compares the computational cost
for an optimization using a exhaustive search of the parameter space with a
simulated annealing algorithm with and without cache. The number of simu-
lation calls necessary during a theoretical exhaustive search of all parameter
sets is derived by multiplying the number of possible values for all decision
variables (optimization parameters). The factor for continuous parameters is
computed by dividing the search interval by the discretization distance that
is also used for the cache parameter equality test.

For the example, the cost function was called 2 008 times. Only 274 of
these calls needed a simulation evaluation, the remaining results could be
taken from the cache, resulting in a cache hit rate of 86%. The cache thus
speeds up the simulated annealing algorithm by almost one order of mag-
nitude, which multiplies with the speedup because of the use of two-phase
simulated annealing.

Notes

The example application in this chapter underlines that the optimization of
complex systems is computationally expensive, even when iterative meta heur-
istics like simulated annealing are applied. This is due to the costly quantita-
tive model evaluation e.g., by simulation. The chapter showed that by using
the two-phase optimization method based on performance bounds together
with a cache of intermediate results as introduced in Chap. 10, an overall
speedup of about two orders of magnitude can be reached.

The results presented in the chapter are based on joint work presented
in [351–353]. Additional heuristics for the further improvement of the two-
phase optimization methodology have been reported in [281]. Related work
on manufacturing system modeling and evaluation can, e.g., be found in [4,
7, 87, 88, 270, 276, 290, 292, 294, 295, 323, 336]. Optimization in automation is
considered, e.g., in [288].
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Communication System Performability
Evaluation

The future European Train Control System (ETCS) will be based on mobile
communication and it overcomes the standard operation with fixed blocks.1

It is introduced to increase track utilization and interoperability throughout
Europe while reducing trackside equipment cost. Data processing on board the
train and in radio block centers (RBC) as well as a radio communication link
are crucial factors for the safe and efficient operation. Their real-time behavior
under inevitable link failures thus needs to be modeled and evaluated. This
chapter presents a stochastic discrete event model of communication failure
and recovery behavior. An additional model for the exchange of location and
movement authority data packets between trains and RBC is presented and
analyzed. Performance evaluation of the model shows the significant impact
of packet delays and losses on the reliable operation of high-speed trains. It
allows to obtain and compare the theoretical track utilization under different
operation strategies.

Train control is an important part of a railway operations management
system. It connects the fixed signaling infrastructure with the trains tradi-
tionally. With the European Union ERTMS/ETCS project (European Rail
Traffic Management System/European Train Control System), a standard-
ized European train control system is designed, which will gradually replace
the great number of different train control systems in use today. It will allow
trains to cross borders without the need to change locomotive or driver, as
it is still necessary today. The system forms the cornerstone of a common
system for train control and traffic management.

At the final stage of ETCS implementation throughout Europe, more or
less all train control infrastructure will be either on-board the trains or dis-
tributed in control centers. There is no need for optical signals, wheel counters,
or a fixed arrangement of track parts into blocks. Trains and control centers
are connected by mobile communication links. The safety of passengers de-
pends on the communication system reliability. Real-time communication and

1 Sect. 14.2 explains the different types of train operation.
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information processing thus play a major role for the implementation of ETCS.
The application example presented here is thus a distributed real-time system.
It is subject to hard safety requirements, but has to deal with inherent soft
real-time aspects (communication delay jitter and packet losses).

The importance of quality of service parameters for the communication
and specification of the real-time behavior of subsystems has been addressed
in the specifications of ETCS (see e.g., [95, 96]). The requirements are how-
ever not very detailed – no distributions are considered, but only probabilities
of meeting certain deadlines. Although it is important to specify subsystem
characteristics, the real-time behavior of the system as a whole can only be as-
sessed by evaluating their interaction. The work presented in this chapter goes
a first step into that direction by evaluating one safety-critical communication
structure together with its failure behavior.

In addition to offering interoperability between the different European
railroad companies, another major goal is to increase track utilization with
higher throughput of high-speed trains. It is obvious that dropping the stan-
dard block synchronization of trains and migrating to a virtual block system
has the potential of allowing closer distances between trains. Transmission
errors in the communication system influence the minimum possible distance
between trains and thus the maximum track utilization. This dependency is
addressed and evaluated for the first time. Communication system, failure be-
havior, and safety braking of trains are modeled and analyzed using different
performance evaluation techniques in the following. The results show that the
vision of “driving in brake distance” behind another train with ETCS would
lead to a very unreliable train behavior.

The remainder of the chapter is organized as follows: After an overview
of the ETCS communication architecture, classic block operation as well as
the future virtual block mode of ETCS are explained. Communication system
failures are modeled and analyzed in Sects. 14.3.1 and 14.3.2 with stochastic
Petri nets and Statecharts alternatively. A condensed model is derived from
the results in the sequel. Section 14.3.4 describes how a safety-critical part
of the ETCS communication system is modeled and presents results of a
real-time behavior evaluation. Rare-event simulation (cf. Sect. 9.2) is applied
because of the small scale of the computed probability measures.

14.1 The Future European Train Control
System ETCS

To facilitate fast and efficient train traffic across borders in Europe, a unified
European Train Control System (ETCS) [95] is under development in several
European countries. ETCS is the core part of the more general European
Railway Traffic Management System (ERTMS). The normal fixed block op-
eration with mechanical elements, interlockings, and optical signals will be
substituted by a radio-based computerized train control system. It receives



14.1 The Future European Train Control System ETCS 289

commands about the train routes that are to be set, and directs wayside
objects along these routes. To simplify migration to the new standard, ETCS
defines three levels of operation.

ETCS Level 1 uses spot transmission of information to the train via pas-
sive transponders. It is a supplement for the conventional, existing trackside
signaling technology for lines with low to moderate train density. Block sec-
tions are defined by the existing signaling system. This level increases safety
against passing signals at danger and in areas of speed restriction.

With the ETCS Level 2 system, radio communication replaces the tra-
ditional trackside signals, which allows considerable savings in infrastructure
and maintenance costs. The system enhances safety considerably by moni-
toring train speed and, if necessary, intervening automatically. This allows
higher speeds and shorter headways, increasing capacity. The traffic manage-
ment system processes and sends information and instructions for the train
driver directly onto a monitor in the driver’s cab via radio communication.
A RBC traces the location of each controlled train within its area. The RBC
determines and transmits track description and movement authorities accord-
ing to the underlying signaling system for each controlled train individually.
The first ETCS Level 2 track has been installed between Olten and Luzern,
Switzerland in April 2002 for Swiss Federal Railways (SBB).

ETCS Level 3 additionally takes over functions such as the spacing of
trains. Radio communication replaces the traditional trackside signals. No
trackside monitoring system is necessary as trains actively report their head
and tail positions as well as train integrity to control centers. Moving block
operation can be applied to increase line capacity. An essential advantage
of level 3 is the reduction in life cycle costs through the abolition of the de-
vices for track occupancy monitoring and trackside signals. The only trackside
hardware necessary are so-called balises, small track-mounted spot devices,
which communicate their identity and exact position to trains that drive over
them. They are used to recalibrate the on-board position tracking system,
which otherwise relies on wheel sensors and can thus be inaccurate during a
longer trip.

Figure 14.1 depicts a simplified view of the communication architecture
underlying ETCS. Each train features a train integrity control system and
a computer that can control train speed. It communicates via GSM-R (see
later) radio with base transceiver stations (BTS), which are connected to
base station controllers (BSC) by cable. The BSCs are communicating with
RBC via ISDN.

RBC are the trackside part for radio at ETCS levels 2 and 3. Their major
functions include safe train separation based on allocation of routes by regu-
lation and interlocking. Position and integrity reports are sent by the trains
periodically or upon request. On the basis of this information and the train
routes, safe track areas are assigned to trains. This is done with so-called
movement authority messages.
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Fig. 14.1. Simplified ETCS communication architecture

The European Integrated Railway Radio Enhanced Network (EIRENE)
project was started on behalf of the European Railways to define a new digital
radio standard for application in the European High Speed Rail System. The
EIRENE System Requirements Specification [98] defines the set of require-
ments that a railway radio system shall comply with to ensure interoperability
between national railways. GSM (Global System for Mobile Communications)
was chosen as the base technology because of availability and cost considera-
tions. Additional functions that are tailored to the needs of railroad use (like
area addressing, automatic international roaming, etc.) have been defined as
Railway GSM (GSM-R [74]). For up-link and down-link there are different
frequency bands reserved for GSM-R around 900 MHz.

The EURORADIO layer of the communication link specifies the Radio
Communication System requirements to the air gap interface between train
and trackside equipment [96,203]. The MORANE (Mobile Radio for Railway
Networks in Europe [250]) project was set up to specify, develop, test, and
validate prototypes of a new radio system. Trial sites exist in France, Italy,
and Germany. Results of a quality of service test at one of these sites are
presented in [287].

14.2 Train Operation with Moving Blocks
Versus Fixed Blocks

This section explains how the future virtual “moving block” method and
the standard fixed block train operation methods work. Position report mes-
sage exchange and emergency braking due to communication problems under
ETCS moving block operation is covered as well. This is used in Sect. 14.3 to
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derive and analyze a corresponding Petri net model. Standard block operation
is covered to compare its track utilization with the results for ETCS later.

The aim of the application example analysis is to investigate the depen-
dency between maximum throughput of trains and reliability of the com-
munication system. ETCS is being introduced to maximize track utilization
by high-speed trains. The maximum theoretical utilization will be achieved if
trains are following each other with a minimum distance. The question is then:
How close after each other can trains be operated theoretically under ETCS?
We assume in the following a continuous track without stops, on which trains
follow each other with a maximum speed v (current high-speed trains have a
maximum speed of 300 kmh−1) and a distance s. Moreover, for the following
considerations we arbitrarily select w.l.o.g. two trains (Train1 and Train2 )
that directly follow each other. To ensure safety of the system, worst-case as-
sumptions are made for all timings, distances, etc. The final results will thus
be upper bounds for the possible track utilization under worst-case assump-
tions of the available specifications. Practical values will be worse because
trains have different speeds, need to follow their timetable, and accelerate or
brake due to trackside conditions.

14.2.1 Fixed Blocks

The old type of block train operation ensures safety by fixed physical blocks,
in which only one train may be located at any moment. Its operation is based
on trackside equipment: Each block begins with a main signal and ends at
the main signal of the following block. Trackside wheel counters check train
integrity at the end of each block. The main signal at the beginning of a block
may show green only if the number of wheels that have entered the block
minus the number of wheels that left it at the end is zero.

A train must not enter the block if the corresponding main signal shows
red. An approach signal is necessary because with bad weather conditions
and high train speeds the train driver might not be able to stop the train
before the main signal after seeing it. The approach signal can obviously not
be located before the previous main signal. One of the problems with blocking
operation is the “discretization” of track space, which leads to a waste of track
utilization. From the throughput point of view, the blocks should therefore be
as small as possible; this would, however, lead to a much bigger investment
in trackside equipment. The minimum block size must be bigger than the
distance from an approach signal to its main signal, which needs to allow for
the maximum braking distance of a train.

The maximum theoretical train throughput is achieved when we assume
an unlimited number of trains with identical speed v, which follow each other
with a fixed head-to-head distance s. For a train to drive through a green
approach signal of block i, the previous train must have left block i already.
The minimum distance, therefore, includes twice the block length (assumed
here to equal the braking distance for current high-speed trains 2 800 m),
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the train length (410 m), and a safety distance (50 m). From the railroad
literature, it is known that the minimum travel distance between two trains
in block operation also needs to obey a time to prepare the travel path (10 s),
signal view time (12 s), and time to resolve the travel path (6 s). At a speed
of 300 kmh−1 of high-speed trains, the theoretical minimum distance between
two trains is then calculated as 8393 m.

It should be noted that these considerations are only done to theoreti-
cally compare ETCS moving block operation with the old way of operating
a block system. In reality, efficient operation of high-speed trains would not
be possible that way. Real-life block sizes are between 2000 m and 4000 m,
and approach signals are located 1000 m ahead. Different national systems for
high-speed train operation exist in Europe. In Germany, an electronic sys-
tem with trackside antenna cables (“Linienzugbeeinflussung,” LZB) already
allows much smaller block sizes and train driver information about the next
train.

14.2.2 Moving Blocks

Continuous operation is introduced by ETCS with the notion of virtual moving
blocks. Because there is no fixed block assigned to a train, and no physical
block borders exist, the train movement is controlled by exchanging messages
with the RBC. Each train periodically checks its integrity and sends this
information together with the current position of the train head to the RBC.
The time needed to check the train integrity is specified to be in the range
between 2 and 5 s. Let Δt denote the time between two successive position
reports of Train1. The requirements definition specifies Δt ≥ 5 s. It is obvious
that more frequent position reports will facilitate smaller train distances s,
thus we choose Δt = 5 s in the following.

The integrity/position report is sent via GSM-R to the RBC and processed
there, which takes 0.5 s typically. The resulting information is sent to the
following Train2, telling it either that everything is fine to go on driving (by
sending a new movement authority packet that extends the free track before
it) or that an emergency braking is necessary immediately.

However, if a communication packet is delayed or lost on either the commu-
nication up-link (Train1→RBC) or down-link (RBC→Train2 ), Train2 needs
to decide on its own at what point of time emergency braking is inevitable out
of safety reasons. There is obviously a deadline t after the last movement au-
thority has been received, when the train needs to be stopped. The worst-case
assumption is that after the last integrity check of Train1 has been completed,
a part of the train’s carriages are lost from the main train and stop where
they are or there is an accident. The movement authority, therefore, shall
never exceed the “min safe rear end” of the preceding train [95] in moving
block operation.

We would like to investigate the deadline and its dependency on the
train head-to-head distance s (see Fig. 14.2 for an illustration). First of all
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Fig. 14.2. Train distance and deadline

the train length (about 410m for the German high-speed train “ICE”)
needs to be subtracted from the distance. Second, when the results of the
position/integrity report of Train1 arrive at Train2, the information is already
some time old. Typical minimum (maximum) delays d can be estimated as
follows: 2 (5) s to complete the integrity check, 0.5 (1) s end-to-end delay of
position message to the RBC, 0.5 s to process the information there, again
0.5 (1) s for the downlink transfer to Train2 plus assumed 1.5 s to process
the information in the train and start braking if necessary. Packet ages d
when arriving at Train2 thus range typically between 5 and 9 s. Then there
is a location error of not more than 20m possible in the position report of
Train1. The emergency braking distance needs to be subtracted as well, being
between 2 300 and 2 800 m depending on the actual speed. For simplicity we
assume in the following braking distance plus train length plus position error
as l = 3 000 m.

The deadline t is then given by t = (s− l)/v−d. The minimum theoretical
distance for v = 300 kmh−1 is thus smin = 4 000 m. This simple consideration
already shows that the common term of “driving in braking distance” with
ETCS is misleading, because even if everything would run perfectly, trains
cannot get closer than 4 km.

14.3 An ETCS Train Operation and
Communication Model

The ability to exchange data packets with position and integrity reports as
well as movement authority packets is crucial for the reliable operation of
ETCS. In this section, a quantitative model of moving block operation and
the necessary data exchange is built stepwise while taking into account the
reliability of the communication channel. A communication link status model
is presented first, constructed both as a stochastic Petri net and a Statechart
model. The analysis results lead to a condensed failure model in Sect. 14.3.3,
which is combined with the communication exchange and emergency stop
behavior afterwards.
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Model construction is based on the following sources of information about
the qualitative and quantitative behavior of the communication system and
its failures:

– A Quality of Service parameter specification (maximum connection estab-
lishment delay, etc.) is given in the Euroradio form fit functional interface
specification (FFFIS) [96].

– Allowed parameter ranges for some system design variables like the min-
imum time between two subsequent position reports sent by a train
are specified in the ERTMS Performance Requirements for Interoperabil-
ity [97].

– Definitions of requirements of reliability, availability, maintainability and
safety (RAMS) as well as acceptable numbers of failures per passenger-
kilometer due to different reasons can be found in the ERTMS RAMS
Specification [94].

– Some additional assumptions (mean time to complete the on-board train
integrity check, etc.) are adopted from a description of simulation experi-
ments carried out by the German railways company [257].

– Another detailed description of communication quality of service parame-
ters is provided in [146], serving as an acceptance criteria for future mea-
surements and tests of actual ETCS communication setups.

– Results of such a quality-of-service test at a railway trial site are presented
in [287], thus facilitating a comparison with the original requirements. It
turns out that the QoS parameters are in the required range, although
often close to and even sometimes worse than the requirements.

In the following, we adopt worst-case assumptions based on the require-
ments, because otherwise there would be no guarantee of a working integrated
system.

14.3.1 A Communication System Failure Model

The communication link between train and RBC is always connected in nor-
mal operation mode. In that situation the following failures may happen:

Transmission errors occur from time to time, possibly due to temporarily bad
radio signal conditions. There is no action necessary, be-
cause after a short time the link is operable again.

Connection losses may happen e.g., because of longer radio signal prob-
lems in areas where the radio coverage is not complete.
The train hardware detects this state after some timeout
and tries to establish a new connection. There is a slight
chance of failing to establish such a connection until a
certain timeout has elapsed, after which the connection
establishment procedure starts over again.
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Fig. 14.3. Failure and recovery model for GSM-R communication channel

Handovers take place every time the train crosses the border be-
tween the communication areas of two neighboring base
transceiver stations (BTS). The train connects to the
next BTS automatically, but this may take some time.

Figure 14.3 shows a stochastic Petri net (more specifically, a deterministic
and stochastic Petri net, cf. Chap. 5) model of the described behavior. The
firing delays and distributions have been chosen as follows. One unit of model
time means one second in reality.

Transition startburstmodels the beginning of a transmission error. It has
an exponentially distributed firing delay because of the stochastic nature of
transmission errors. The corresponding firing time is comparable with a mean
time to failure of the communication link because of transmission errors. The
specification requires this value to be greater than or equal to 7 s for 95%
of all cases. From the density and distribution functions of the exponential
distribution

f(x) = λe−λx and F (x) = 1 − e−λx

we can calculate the necessary parameter λ value:

λ = − ln p

x
≈ 0.00733 with probability p = 0.95 and x = 7.

Transition endburst models the end of the transmission problem. The delay
is assumed to be memoryless and the specification requires it to be smaller
than 1 s in 95% of all cases. Thus, the transition’s firing delay is assumed to
be exponentially distributed with parameter λ ≈ 3 (F (1) = 1 − e−λ = 0.95).

The crossing of a cell border and connection setup with a new BTS is
modeled by transitions cellborder and reconnect, respectively. The BTS
are situated a few meters away from the track normally and have a typical
density of 0.1 . . . 0.3 BTS per kilometer. Another source specifies 7 km as the
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mean BTS distance, which is adopted here. Unlike for personal use of a mobile
phone, handovers happen quite often due to the speed of the train. ETCS is
required to work for speeds up to 500 kmh−1 (139 m s−1). Thus the worst-case
mean time between two handovers is 50.4 s. The firing delay of cellborder is
thus exponentially distributed with parameter 0.0198 (the mean delay being
equal to 1/λ). From the specification we know that a reconnection is required
to take at most 300 ms, which is taken as a worst case with a deterministic
transition reconnect.

Following the specification, a complete connection loss takes place only
rarely, namely 10−4 times per hour or 2.77 ∗ 10−8 per second. The parameter
of the exponential transition loss is set accordingly. There is a certain amount
of time needed to detect the communication loss, which is required to be not
greater than 1 s. This is modeled by the deterministic transition indicate
with one as the fixed delay.

After being offline, the train communication system tries to reestablish the
link at once. The requirements specify that a connection attempt must be suc-
cessful with 99.9% probability, while in the remaining cases the establishment
is canceled after 7.5 s and retried. This behavior is modeled with immediate
transitions carrying the success/fail probabilities estp and failp, and the de-
terministic transition fail with delay of 7.5. Connection establishment times
are random, but required to be less than 5 s for 95% of the cases. The cor-
responding firing distribution of transition connect is thus exponential with
parameter 0.6.

The model shown in Fig. 14.3 depicts states and state transitions of the
communication link. The initial state is connected. It is obvious that there
will always be exactly one token in the model, letting the Petri net behave like
a state machine, and the reachability graph is isomorphic to the net structure.

Because in every marking there is at most one transition with non-
exponentially distributed firing delay enabled, the model can be numeri-
cally analyzed with standard solution algorithms for non-Markovian stochastic
Petri nets as described in Sect. 7.3.3. Because of the state machine structure, it
would also be possible to exchange all deterministic transitions (delay τ) with
their exponential “counterpart” (with firing rate λ = 1/τ), without changing
the resulting steady-state probability vector. It could then be analyzed as a
simple generalized stochastic Petri net.

Numerical analysis of the example is computationally inexpensive because
of its small state space. Despite the “stiffness” of the problem (e.g., firing
rates of transitions endburst and loss differ by eight orders of magnitude),
the exact solution is a matter of seconds. A simulation with proper confidence
interval control would take quite some time because of the mentioned rare
events.

Table 14.1 shows the results of the numerical analysis. The connection
is working with a probability of 99.166%, being worse than the required
availability of 99.95% as specified in EEIG ERTMS User Group [96]. This
requirement is commented to be a coverage requirement, although we see
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Table 14.1. Performance results of the communication failure model

Place/state Probability

Connected 0.916
Burst 2.4305 ∗ 10−3

Handover 5.9027 ∗ 10−3

Loss indication 2.7546 ∗ 10−8

Establish 4.5910 ∗ 10−8

Estfail 2.0680 ∗ 10−10

from the model evaluation that it is already violated by the allowed handover
downtimes.

In fact, handovers account for more than 70% of the overall unavailabil-
ity. To avoid their impact on the communication link, there are discussions
about installing two independent GSM-R devices in each train. For instance
in the Rome-Naples ETCS installation, all electronic units have been dupli-
cated for a higher reliability and availability. The connection to the next BTS
can then be established when the train gets close to the cell border already,
thus avoiding any offline state due to handovers. Bursts are responsible for
another 29% of communication outage, while the other failures have only a
small influence.

Another direction of current research is to predict necessary handovers
to speed them up. This is possible for train control especially because train
routes and locations are well known in the system [242]. When a handover
is imminent, it is clear what the next base station will be, and the handover
process can be significantly sped up by a preparation. GSM management data
are loaded at the future base station for this reason.

14.3.2 Alternative UML Statechart Model
and its Transformation

UML Statecharts as extended by the UML profile for schedulability, perfor-
mance, and time [255] (cf. Sect. 3.4) may be used for the communication link
modeling instead of stochastic Petri nets. Figure 14.4 depicts such a Statechart
describing the ETCS radio communication link state following the descriptions
mentioned earlier.

The radio link operates in Normal Mode initially, which is specified by the
destination state of the black dot. All times are given in seconds. Transmission
errors are modeled by a Statechart transition leading from state Normal Mode
to state Transmission Error with an <<RTdelay>> of {RTduration =
(percentile, 5, 7)} (less than 7 s in 5% of all cases). It takes the radio link
less than 1 s in 95% of all cases to operate in Normal Mode again, which is mod-
eled by the Statechart transition with an <<RTdelay>> of {RTduration =
(percentile, 95, 1)}.
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Fig. 14.4. UML Statechart for the ETCS radio link

Time between two handovers is assumed to be exponentially distributed
with a mean of 50.4 s. The inscription of the corresponding transition from
state Normal Mode to state Handover is {RTduration = (exponential,
50.4)}. The connection to the next BTS is modeled by a Statechart tran-
sition with a fixed delay of 0.3 s: <<RTdelay>> {RTduration = 0.3}.

Total connection losses result in a transition from state Normal Mode
to Connection Loss with an exponentially distributed delay with mean
3.6 ∗ 106 s, specified by {RTduration = (exponential, 3600000)}. Con-
nection loss detection is modeled by a transition with a fixed delay of 1 s
<<RTdelay>> RTduration = 1. The behavior during a reconnection at-
tempt is modeled in the Statechart using a choice state with two outgoing tran-
sitions: One with a probability of 99.9% (<<PAstep>> {PAprob = 0.999},
Success) and the other with a probability of 0.1% (<<PAstep>> {PAprob =
0.001}, Failed). The cancellation after 7.5 s is represented by a SM-transition
with the fixed delay of 7.5 s {RTduration = 7.5}. In the case of a successful
immediate reconnection it takes not more than 5 s in 95% of all cases until
the radio link operates in Normal Mode again. This is modeled by the tran-
sition from state Reconnecting to state Normal Mode with the inscription
<<RTdelay>> {RTduration = (percentile, 95, 5)}.

The UML Statechart model can now be translated into a stochastic Petri
net following the method described in Sect. 3.5. The result is an analyzable
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Fig. 14.5. Resulting stochastic Petri net after translation

Petri net model for which performance measures can be derived by a soft-
ware tool. For the example, the resulting stochastic Petri net model is shown
in Fig. 14.5. To avoid cluttering the picture, names of model elements are
omitted. Section 3.5 uses a systematic way to attach names to the Petri net
model elements derived from the Statechart state names. Petri net places
and transitions resulting from one state of the UML Statechart are shaded
together and marked accordingly. The probabilistic choice between failure
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and success of a reconnection is modeled with the immediate transitions
in conflict.

The model is a deterministic and stochastic Petri net because of the tran-
sition types. It is strongly connected and safe (1-bounded). Many unnecessary
immediate transitions are present in the model, which are due to the empty
entry and exit activities in the UML Statechart model. After the simplifica-
tion described in Sect. 3.5 the model in Fig. 14.5 is reduced to a model similar
to the one shown in Fig. 14.3. The evaluation results given in Sect. 14.3.1 thus
also apply to the UML model of this section.

14.3.3 Derivation of a Condensed Failure Model

Section 14.3.4 presents a model for the real-time communication between
trains and RBC. Its performance evaluation is, however, computationally ex-
pensive, which is in part due to the combination of the failure model with
the normal operation model. The failure model as presented in Sect. 14.3.1 is,
therefore, condensed into a smaller model here, to make the later evaluation
of the combination less time consuming. This is possible without considering
the operation model because the failure model does not depend on it.

By doing so, there will be a tradeoff between model complexity and accu-
racy. We decided to condense the failure model into a two-state system with
the basic states ok and failed. A corresponding stochastic Petri net is shown
in Fig. 14.6.

The question is then how to specify transition firing rates to minimize the
approximation error. The main characteristic of the failure model is mean
availability, which shall be equal in the exact and condensed model. Thus the
probability of having one token in place ok needs to be 0.99166.

Even with a correct availability, an error can be introduced by selecting
a wrong speed of state changes between ok and failed. If the speed would
be too high, no correct packet transmission is possible, because a certain
undisturbed time (given by the packet length and transmission bit rate) is
always necessary. The second restriction imposed on the condensed model is
thus to keep the mean sojourn time in state ok exactly as it was in the full

failrecover

failed

ok

Fig. 14.6. Condensed failure model
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model. This time is the reciprocal value of the sum of all transition firing rates
going out from the state, in our case 1/(λstartburst+λcellborder+λloss) ≈ 36.77.

With these two restrictions, the transition rates can be easily calculated.
Let λ denote the transition rates and π the state probability vector in steady-
state. Then

πok = 0.99166, πok + πfailed = 1 (probabilities)
πok λfail = πfail λrecover (balance equations)

λfail = 1
36.77 (sojourn time)

and thus λrecover = 3.236

The model is then completely defined and will be used as a simplified failure
model in the subsequent section.

14.3.4 A Moving Block Operation Model

A model of the position report message exchange and emergency braking due
to communication problems is developed below. The goal is to analyze the
dependency between maximum throughput of trains and reliability measures
of the communication system.

Figure 14.7 shows a Petri net model for the ETCS movement authority
data exchange as explained in Sect. 14.2. The upper part models the gen-
eration of the position/integrity report and its transmission to the following
train via the RCB. Transition GenMsg models the generation of a new message
that assures train integrity and contains the current position. The send pro-
cess to the RBC is modeled by place sendingUp and transition TransmitUp
(delay specification see below). Processing at the RBC corresponds to the

failed

sendingUp process

drop

TransmitUp

sendingDown

TransmitDown

arrived

fail

GenMsg

recover

ok lossDownlossUp

#count

reset

Tick

20

20

count
RBC

Resetup

p:2

Fig. 14.7. Model of communication during moving block operation
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deterministic transition RCB, and the transmission to the following train anal-
ogously to the uplink.

The failure behavior of the communication link is given by the condensed
model as derived in the previous section. It is connected to the main model in
a way that all messages are lost (tokens are removed from places sendingUp
and sendingDown) as long as the link is failed.

For the application of the chosen simulation method, a Petri net place was
needed in which the number of tokens can be used as the thresholds and final
event. For this reason, the time until deadline t is “counted” with tokens in
place count. For a reasonable number of possible thresholds, we define 20 as
the number of tokens modeling the violation of the deadline. The deterministic
firing time τTick of transition Tick then needs to be set accordingly depending
on the deadline under evaluation: τTick = d/20.

Every time a new movement authority message arrives at the second train
(place arrived), the current elapsed time is set to zero: transition reset fires
and removes all tokens from place count. The train stops after an exceeded
deadline and we assume a Resetup time of 15min before the train can move
on. Movement authority packets arriving during that time are dropped (tran-
sition drop has lower priority than reset).

The end-to-end transmission delay for messages is specified in the require-
ments as being between 0.4 and 0.5 s on the average, but being less than 0.5
for 95%, less than 1.2 s for 99%, and less than 2.4 s in 99.99% of all cases. For a
realistic mapping of this timing behavior into the stochastic Petri net model,
we used two generalized transitions with expolynomial firing delays, how they
are allowed in the class of extended and deterministic stochastic Petri nets
(see Sect. 5.1). The actual data transmission times (0.13 s for a packet) have
to be incorporated as well. The transition firing delay of TransmitUp and
TransmitDown is defined by the following distribution.

fX(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

9.5 for 0.53 ≤ x < 0.63
0.057 for 0.63 ≤ x < 1.33
0.00842 for 1.33 ≤ x < 2.53
0.0 otherwise

(14.1)

14.4 ETCS Performance Under Failures

For the performance evaluation of the model, the numeric analysis meth-
ods of Chap. 7 cannot be used, because the restriction of not more than one
enabled nonexponential transition per marking is violated when transitions
TransmitUp and TransmitDown are both activated. For a discrete time scale
analysis, the resulting state space size would be too big because of the com-
plex and highly differing firing delays. Thus simulation was the only choice,
but standard methods could only be used for a very limited number of evalua-
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Fig. 14.8. Train stop probability vs. train distance

tions. Acceptable stop probabilities are naturally very small, and thus a rare-
event simulation technique is necessary to successfully derive the measure of
interest.

The presented Petri net model of the moving block operation has been eval-
uated using the RESTART implementation in TimeNET [198] (cf. Sect. 9.2).
Computations were made on a cluster of Sun workstations under SunOS.
Thresholds are defined based on the number of tokens in place count, whereas
the rare event A is defined by having 20 tokens in it. The tool selects suitable
thresholds based on a prior standard simulation run with limited computa-
tion time. Near-optimal thresholds are set for numbers of tokens where the
probability has been computed, while the rest are set linearly depending on a
manual choice of the overall number of thresholds.

Figure 14.8 shows the resulting probability for a train to be stopped due to
an exceeded deadline vs. the train distance. To get a notion of the impact of the
movement authority packet age at arrival, two curves are shown representing
the minimum (5 s) and maximum (9 s) typical age. Beginning at a point where
the train distance is big enough for the trains to be not almost always stopped
(4 km in the 5 s case), the curves exhibit a logarithmic dependency between
probability and distance.

The analysis shows a significant impact of communication delays and
packet losses on the possible track utilization under ETCS level 3/moving
block operation. As it has been already pointed out in a previous paper [346],
the vision of “driving in braking distance” is unrealistic. However, the refined
model presented here leads to more realistic values for the probability of a
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stopped train. Depending on the required reliability of high-speed train oper-
ation (and thus the accepted number of train brakings due to ETCS commu-
nication problems), it might be necessary to select a relatively long distance
between trains. Another possibility will be to revise the current ETCS com-
munication specifications. Compared with a theoretical setup of fixed blocks
with the minimum block size, the performance measures show that an ETCS
controlled train will be stopped about 1.3 ∗ 10−6 seconds per year, or a train
stops once every 7.1 ∗ 108 years. However, the real competitors to ETCS in
terms of performance are the current national high-speed train operation sys-
tems. As they are usually based on standard electronic trackside equipment,
their main problem is not communication system reliability, but installation
and maintenance cost.

Notes

Model-based performance evaluation is helpful during the design of fault-
tolerant distributed real-time systems. The chapter investigated safety-critical
communication inside the future European Train Control System. Stochastic
Petri nets and Statecharts are used to model and evaluate the failure and
recovery behavior of the communication link as well as its combination with
the exchange of vital train information between trains and radio block cen-
ters. Quantitative results are presented that put into perspective quality of
service specifications and theoretical high-speed track utilization. The model
evaluations show the significant influence of communication system reliability
on efficient train operation. It will be crucial for the success of the final ETCS
implementation level to analyze the real-time behavior of train operation and
communication system under failures with more details.

The contents of the chapter are an extended presentation of the work pub-
lished in Zimmermann and Hommel [346, 347]. Statechart model and trans-
lation in Sect. 14.3.2 were introduced in Trowitzsch and Zimmermann [308].
Design, analysis, and simulation of the presented models has been done using
the tool TimeNET (cf. Sect. 12.1) and prototype extensions of it.

The first model presented in Zimmermann and Hommel [346] has been
adopted as a case study for the modeling and evaluation with StoCharts in
Jansen and Hermanns [180], a stochastic extension of state chart models.

Petri nets and their stochastic timed extensions have proven to be a useful
formalism for real-time systems. They are considered to describe discrete event
systems in a concise and appropriate way. An additional advantage is the
availability of many different analysis and simulation techniques as well as
software tools. Petri nets have been used in the context of real-time systems
many times, see e.g., [34, 136,236].

Most of the work in the area of train control systems deals with qualita-
tive aspects like validation of correctness, absence of forbidden safety-critical
states, etc. Yet in a real-time system like a distributed communication-based
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train control system, critical safety questions can only be answered when also
quantitative aspects are considered and evaluated. Failures and other exter-
nal influences on the model require stochastic model values, but fixed values
for deadlines or known processing times are equally important. Modeling and
evaluation techniques need to support both to be applicable in this area.

In references [182, 243], the ETCS communication structure is modeled
with colored Petri nets. The model is used for a division of the system into
modules, visualization of the functional behavior, and a check of different
scenarios.

A verification of the radio-based signaling system together with a case
study of a rail/street crossing is carried out in reference [77]. Live sequence
charts are used to model the system, which is analyzed with the Statemate

software tool. The same example is specified and validated by the authors
of [10] with a formalism called “Co-Nets.” The model is based on timed Petri-
Nets and contains object-oriented features as well as rewriting logic.

The ETCS radio block center is formally modeled and validated in ref-
erence [47]. Message sequence charts are used to model and check different
scenarios.

ETCS train traffic is compared with today’s standard train control opera-
tions in Germany in a simulation study of Deutsche Bahn (German railways
company) [257]. Using a proprietary simulation program, the movement of a
set of trains through an example line is simulated. The results say that ETCS
operation in its final stage will increase track utilization by about 30% for the
example. However, the communication is not modeled, and failures are not
taken into account.
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Supply Chain Performance Evaluation
and Design

Supply chains and logistic networks play a major role in today’s businesses
because of the growing importance of external suppliers to final products and
partition of work between distributed plants. Material buffer levels are kept
small to decrease the bound investments. Timely deliveries of intermediate
parts are thus necessary to avoid shipment delays while keeping the amount
of work in process small.

Model-based quantitative evaluation of logistic networks is a vital tool to
aid in the decision-making at various stages of planning, design, and opera-
tion of supply chain operation. A robust control and management of supply
chain loops can be achieved by analyzing performance measures such as the
throughput rate, average resource utilization, expected number of parts in a
buffer, setup costs, work-in-process inventory, mean order queue time, etc. All
of these measures are indicators of how well the supply chain is operated.

Typical decisions during the planning and design stages include the num-
ber of containers or transport facilities, buffer storage capacity in a logistic
center, scheduling of material and parts, number of links in inbound and out-
bound logistics, and location of distribution centers. During the operational
phase, performance modeling and analysis can help in making decisions re-
lated to predicting the probability of a material shortage.

An adequately complex and flexible model class is necessary to capture
the detailed behavior of a logistic network and the individual nodes, such as
manufacturing plants (assembly, fabrication), logistics centers, suppliers, and
dealerships. Colored stochastic Petri nets as described in Chap. 6 are applied
to an example in the following.

The remainder of the chapter is organized as follows. The subsequent sec-
tion introduces the supply chain example that is considered throughout the
chapter. Section 15.2 presents a colored stochastic Petri net model of the ex-
ample, which is finally analyzed in Sect. 15.3. The modeling method applied
in the chapter is covered in detail in Chap. 6.5, while the used quantitative
evaluation technique (discrete event simulation) has been explained in Sect. 9.
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15.1 A Supply Chain Logistics Example

A supply chain system from the area of vehicle production is taken as an ex-
ample here. It represents an adapted version of a real-life industrial problem
that has been considered in a project involving a major U.S. car maker, and
groups of Stanford University and Technische Universität Berlin. Details of
system and model have been altered in order to keep the original information
confidential. Model and problems are, however, typical. The main issue con-
sidered here (thus driving the modeling and evaluation process) is the question
how long customers have to wait for their vehicle from the day of the purchase
decision. This delay between order and delivery (or order-to-delivery time) is
denoted by OTD time in the sequel.

The background is the way how the U.S. vehicle business (in contrast to
European car makers) works today. Vehicle dealerships keep a high number of
cars in their lot to have a large selection available for prospective customers.
Buyers usually select a vehicle directly from the lot and thus do not need to
worry about the time it would take to get an individually ordered vehicle.
There are, however, big drawbacks for the car making companies and dealers.
The high amount of available cars binds money and makes fast reactions to
changing customer needs impossible. In fact, the selection of vehicles and the
installed options are guessed based on past sales patterns. What thus often
happens is that many of the vehicles can only be sold by giving large rebates,
decreasing the earnings substantially. Another issue is that individually man-
ufactured vehicles could be sold with a higher price considering the different
options. A navigation system would for instance result in high earnings when
sold to an interested customer, but might only be sold to a certain percentage
of customers.

The current way of operating the supply chains, plants, and logistics im-
plies a very long OTD time for an individually ordered vehicle. Car makers
have realized that an agile supply chain and a short OTD time can be a sub-
stantial marketing factor and lead to higher earnings. Even in Europe, where
individually ordered vehicles are sold by tradition, OTD times have become an
issue to attract more customers lately. The example considered in this chapter
shows how OTD times of a certain operation style can be evaluated and how
possible improvements are quantifiable to aid in strategic design decisions.

Figure 15.1 shows a rough overview of the covered entities. Customer,
dealership, and (assembly) plant as well as the logistic network that transports
vehicles from the plant to the dealership are considered. Internal and external
suppliers which deliver intermediate parts to the assembly plant (inbound
logistic) are not considered here. We assume that enough material is available
at the plant to avoid downtimes. How this can be efficiently achieved has been
considered in the project as well.

A pure on-demand production setup would work as follows. When a cus-
tomer comes to a dealership, he has a certain vehicle in mind that he or she
wants to buy. This specification of a desired vehicle is ordered by the dealer



15.2 Colored Petri Net Model of the Supply Chain Example 309

Dealership PlantCustomer

Desired Vehicle Order

Logistics Network

Vehicle

Delivery of Vehicle

Fig. 15.1. Sketch of supply chain entities
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Fig. 15.2. Main colored Petri net model of the example

from the plant. The order is stored in an order queue, which is after some
time processed by the plant, resulting in a new vehicle in the plant yard.
From there it is transported by the logistics network to the dealer where the
customer can pick it up.

15.2 Colored Petri Net Model
of the Supply Chain Example

The following sections present the supply chain model and its hierarchical
decomposition into submodels. Each model describes the actions and decisions
of one typical entity, for example, a dealer or customer. Communication takes
place by exchanging tokens via interface places. Behavior and decisions based
on rules are specified using transition firing attributes.

Figure 15.2 shows the topmost level of hierarchy of the supply chain model.
It describes the main entities and their interaction. Transitions with thick
bars depict substitution transitions, which are refined with a submodel (see
the following subsections). Types of tokens in places are depicted in ital-
ics (e.g., Config or Vehicle ). Transition Customer models the customer
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Table 15.1. Token types (colors) of the supply chain model

Color Element Element Type Remarks

Config model string “ModelA” or “ModelB”
drive string “TwoWd” or “FourWd”
interior string “’Leather,” “Vinyl,” or “Cloth”
color string “Black,” “Blue,” “Grey,” “Green”

“Silver,” “Tan,” “Red,” “Orange”
“Yellow” or “White”

Order Conf Config Vehicle specification
OrderTime DateTime Time of ordering
Origin string “Customer” or “Dealer”

Vehicle Order Order Order for the production
ProdTime DateTime Time when production finished

behavior; see Sect. 15.2.1 for more details. The selected vehicle type and
configuration information is transferred to the dealership model (transition
Dealership, Sect. 15.2.2) through place DesiredVehicle. The queue of wait-
ing orders at the plant is modeled by place OrderQueue. After production in
the Plant (explained in Sect. 15.2.3), new vehicles arrive in the PlantYard
and are transported by Logistics (see Sect. 15.2.3) to the DealerLot. The
model considered here only takes into account one dealership and one plant
in contrast to the original detailed model.

Tokens model complex entities and thus have a set of corresponding at-
tributes. The set of token types used in the supply chain model are listed in
Table 15.1. String and DateTime are the only necessary base types. The lat-
ter is a convenient way of handling a point in time by specifying day and time.
Configuration of a vehicle and the type of car that a customer wants to buy are
described by the type Config. It specifies the model, type of drive, interior,
and color. This is a simplification of the actual configuration attributes for
the sake of readability. An order for a vehicle production is described by color
Order, describing the order time as well as the ordered configuration. An ac-
tual vehicle has the attributes Order – the order that initiated the production
of the vehicle – and the time when its production was finished.

15.2.1 Customer Model

For our purposes it is important to specify when a customer comes to a dealer-
ship to purchase a car and what configuration he wants to buy. This customer
behavior is captured in the customer submodel shown in Fig. 15.3. The timed
transition NewCustomer models a new customer purchase. Its firing delay is
exponentially distributed with a mean interfiring time of 5 000 s, the assumed
time between two successive customers at a dealership.
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Fig. 15.3. Model of customer vehicle configuration selection

The configuration of the customer’s desired vehicle is generated in a step-
wise fashion. A newly created token of type Config without set attributes
is generated by the firing of NewCustomer in place SelectModel. The to-
ken then follows through a series of places (SelectModel, SelectInterior,
SelectDrive, and SelectColor), in which one attribute of the configuration
is set one after another. Firing probabilities that correspond to known cus-
tomer choices are associated to the immediate transitions like ModelB and
ModelA in the model selection case. The different choices are obviously not
independent in reality, but a previous analysis showed that this simplification
does not lead to a significant error. The firing of any one of the immediate
transitions sets one configuration attribute to the corresponding value. Fir-
ing ModelA for instance sets model to “ModelA.” To simplify the figure, only
one arc inscription pair is shown for every decision, and some transitions are
neglected in the color selection case. The fully specified configuration token
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Fig. 15.4. Dealership model

finally arrives in place DesiredVehicle, which acts as an interface to the
upper model level and thus the dealership model.

15.2.2 Dealership Model

When a customer wants to purchase a vehicle, the corresponding token of
type Config arrives in place DesiredVehicle in the dealership model shown
in Fig. 15.4. The dealer sends a new order to the order queue (by creating a
token of type Order in place OrderQueue). The configuration of the order is
copied from the customer’s choice, and the order time is set to the current
model time (NOW). A similar copy of the order is kept in place WaitingOrders
at the dealership to identify waiting orders later on when new vehicles are
available in the dealer lot.

If a vehicle arrives at the dealer lot (place DealerLot) that matches a
waiting order, transition DeliverOrdered fires. The guard function of that
transition ensures that only vehicles that match exactly are delivered.

15.2.3 Plant Model

The plant submodel is depicted in Fig. 15.5 and describes how orders in the
order queue are processed. The model contains two parts: the bottom model
specifies at what times new orders are scheduled for production, while the
upper part models the actual scheduling and production process.

Material and production planning takes place in the presented model once
a week. The firing delay of transition StartSchdule is thus 7 ∗ 24 ∗ 60 ∗ 60 s.
Its firing generates a token without a specified type in place Scheduling, en-
abling transition Schedule due to its firing guard #Scheduling>0. Transition
Schedule is immediate, and thus moves all currently waiting orders from the
OrderQueue to place Waiting by a series of subsequent firings. The scheduling
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Fig. 15.6. Vehicle logistics: Train transport

phase is finished when the order queue is empty, because that state enables
transition EndSchedule. Its guard function is #OrderQueue==0, and the firing
removes the token from place Scheduling.

Order tokens wait in place Waiting for the corresponding start of vehicle
production. The sequencing of orders is done by transition StartProduction,
which has single server semantics (the default) for this reason. It may fire ev-
ery 2 600 s, which is an estimation of the time between two successive vehicle
production starts that are available for one dealership. Vehicles in produc-
tion are modeled by order tokens in place Processing, and the production
time (about one week) is specified at the infinite server timed transition
Production. As mentioned earlier, material buffering and supply chain issues
are not considered in this simplified model.

Finished vehicles are modeled as new tokens that are created in place
PlantYard. Attributes Order and ProdTime are set accordingly: The order
containing the configuration information is copied from the initiating Order

token, while the production time is set to the current model time.

15.2.4 Vehicle Logistics Model

New vehicles need to be transported from the plant to the dealership, which
is done by the logistics network. Vehicles are picked up from the plant yard
and transported to the dealer lot. Figure 15.6 shows a first simple version of
how this can be done, considering only train transport. Vehicle transport by
train has the advantage of being very cost-efficient. The downside is its long
delay and high variance. Moreover, train transport is externally managed by
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the train companies, and thus cannot be influenced significantly by the car
making company.

Transition ScheduleForTrain models the start of a train transport for
a vehicle token. All vehicle tokens are moved immediately to place OnTrain,
which depicts the actual transport. To avoid unnecessary model complexity, no
railcar loading and scheduling is modeled. We realistically assume that there
is always enough transport capacity available on trains; therefore, there is
no resource restriction necessary. Transition TrainTransport models the ac-
tual delay of the transport operation, including waiting and scheduling times,
which is assumed to be exponentially distributed with a mean of one million
seconds (about 11 days). The firing semantics of TrainTransport is infinite
server, because all vehicle tokens are delayed concurrently. A more complex
logistics model is developed and analyzed in Sect. 15.3.3.

15.3 Order-To-Delivery Time Evaluation
and Improvement

The order-to-delivery time for customers is evaluated based on the model
that has been explained in the previous sections. We assume that the initially
planned setup of the supply chain (as described earlier) is developed further to
achieve better OTD times. Results of the quantitative model evaluation lead
to ideas how the design and operation of the supply chain can be changed in
order to decrease the OTD time. The subsequent sections present the corre-
sponding updated models as well as the resulting OTD values. It serves as a
demonstration of how a series of model changes and quantitative evaluations
can be successfully exploited to improve the performance of a supply chain
significantly.

The following result measures are defined:

– The most important value we are interested in is the OTD time in days
as a mean over all customers, defined as measure OTD. This is a nontrivial
measure, because we need to average over customers and not over time
as it is offered by default. The waiting time of a customer is given di-
rectly by the time that the corresponding Order token resides in place
WaitingOrders of the dealership model. However, waiting times cannot
be directly measured.
The OTD time can be derived indirectly using Little’s Law (compare
p. 70). The waiting time of a token in a place is thus equal to the mean
number of tokens in that place divided by the mean interarrival rate (all
in steady-state). The mean time between the arrival of new customers is
known from the mean firing delay of transition NewCustomer in the cus-
tomer submodel, which was set to 5 000 s (17.28 firings per day). What
remains to be computed is the mean number of waiting tokens in place
WaitingOrders, which is simply specified by #WaitingOrders. The OTD
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time in days can thus be computed in steady-state, averaged over an in-
finitely long time interval as

OTDtime =
#WaitingOrders

17.28
– In later model variants some vehicles are stored in the dealer lot. It makes

sense then to analyze the number of vehicles available in the lot, which is
defined as

NDealerLot = #DealerLot

Measure NDealerLot is analyzed in steady-state as well.

Discrete event simulation is used for the quantitative evaluation of the model.
Numerical analysis techniques are not applicable because of the transitions
with nonexponentially distributed firing delay distributions. Moreover, the
storage of model time values in tokens as necessary for the OTD time evalua-
tion leads to a state space that is infinite. Performance measures of the supply
chain example model have been analyzed with the software tool TimeNET
(cf. Sect. 12.1).

All evaluations have been carried out on a PC with Intel Pentium III Mo-
bile processor running at 1 GHz under Windows XP. A simulation run of 6
years of model time typically took 45 s. Measure samples for the first year of
model time are discarded to avoid influences of the initial transient phase.
Statistical analysis shows that the remaining simulation length leads to suf-
ficiently accurate results for our purposes. A typical evaluation like the one
with two trucks in Sect. 15.3.3 shows that considered 26 553 samples result in a
confidence interval for the mean OTDtime of (7.9617, 8.2873) (i.e., a maximum
relative error of only 2%) for a confidence level of 99%. Because of the high
percentage of vehicles that are immediately delivered in that case, the devi-
ation of the samples is quite high, which means that this example represents
one of the worse confidence settings.

The initial setup of the model as specified in Sect. 15.2 is evaluated first.
There are obviously no vehicles available in the dealer lot, because every one
is produced on demand and immediately delivered; thus NDealerLot = 0. The
mean OTD time is computed as OTDtime = 25.08 days.

15.3.1 Popular Configuration Storage at the Dealership

The first change in the model includes the details of how vehicles can be
produced and stored without prior customer order. A rough estimate of the
probability of vehicle configurations of customer purchase decisions is known
from past sales numbers. The dealership can thus order popular configura-
tions, keep them available at the dealer lot, and sell them to customers with
matching vehicle desire immediately. The dealership can check the influence
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Fig. 15.7. Model of dealership with storage of popular configurations

of a certain selection of popular configurations and the number of available
vehicles at the lot using the performance evaluation of the model.

Figure 15.7 shows a more detailed model of a dealership with appropri-
ate changes. A new customer order arrives as a corresponding token in place
DesiredVehicle. If there is a completely matching vehicle available in the
dealer lot (place DealerLot), transition ExactVehicle fires and delivers that
vehicle to the customer. In the case that a vehicle is available that is al-
most exactly as wanted (only the color may differ), that vehicle is sold to
the customer by firing transition SimilarVehicle with an assumed proba-
bility of 50%. The other half of almost matching configurations as well as
all nonmatching ones are handled by transition OrderVehicle. Transitions
OrderVehicle and SimilarVehicle have priority one to be in conflict, while
transition ExactVehicle has priority two to ensure that an exactly matching
vehicle is always sold. The matching of transitions DeliverOrderedOrExact,
ExactVehicle and SimilarVehicle is achieved by the comparison of the to-
ken attributes in the shown guard function.

Firing of OrderVehicle works like in the first simplified model. An Order

token is placed in the OrderQueue with appropriate configuration setting and
current order time. Furthermore, it is marked in the token that the order
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originated from a customer. A similar token is placed in WaitingOrders, from
which waiting orders are removed by firing DeliverOrderedOrExact when
a matching new vehicle arrives in the dealer lot. Waiting orders should be
fulfilled first, thus DeliverOrderedOrExact has priority three, superseding all
other delivery transitions. It should be noted that the vehicle that is delivered
in response to a waiting order has not necessarily been produced to that order.
It could have arrived by chance in the dealer lot after the order was placed.

A new vehicle is ordered by the dealership whenever a vehicle is sold
directly from the lot. Firing SimilarVehicle or ExactVehicle creates one
token in place GenerateOrder, which initiates the selection of an appropriate
configuration in subnet SelectConf (see below), which is placed in the order
queue just like customer orders. This keeps the number of available vehicles
at the dealer lot at a steady level. The initial marking of place DealerLot is
chosen appropriately with a number and selection of vehicles that should be
available.

Selection of a vehicle model and configuration for a dealer order is done
in submodel SelectConf, which is shown in Fig. 15.8. There is simply one
immediate transition PopConfi for every vehicle configuration that is con-
sidered for being available at the dealer lot. The output arc inscription sets
the appropriate order information. Relative firing probabilities of the conflict-
ing immediate transitions are chosen for simplicity according to the previous
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PopConf2

<x>

PopConf3

<x>

PopConf4

<x>

GenerateOrder

DealerConf
Config

OrderQueue
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<{Conf=PopConf, Origin=”Dealer”}>

<{model=”ModelA”, interior=”Leather”, drive=”FourWd”, ..”}>

<{model=”ModelB”, interior=”Cloth”, drive=”FourWd”, ..”}>

<{model=”ModelA”, interior=”Leather”, drive=”FourWd”, ..}>

<{model=”ModelA”, interior=”Cloth”, drive=”FourWd”, ..}>

Fig. 15.8. Popular configuration selection for dealer orders
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Table 15.2. Influence of vehicle storage on the OTD time in days

Number of NDealerLot Immediate OTDtime

configurations delivery All Waiting

2 153.3 34% 16.07 24.36
9 43.8 53% 10.29 21.87
9 168.3 55% 9.99 22.33

purchase decisions at the dealership. In the actual project an optimization
was carried out to find a small number of configurations that matches the
set of popular configurations with small deviations. One of the decisions to be
made at the dealership is how many of the most popular configurations should
be ordered and stored. The presented model contains at most nine configu-
rations, which together account for almost half of all vehicle sales. Transition
PrepareOrder creates an order token in the order queue with the generated
configuration and a marker that this order was placed by a dealership.

This model change will not result in a significantly smaller OTD time for
plant-ordered vehicles. There will, however, be a certain probability of a zero
OTD time, leading to a smaller average mean OTD time for all customers. Dif-
ferent setups have been evaluated after the model change. Results are shown
in Table 15.2.

The table shows the number of popular configurations that are stored
in the dealer lot and the mean number of available vehicles. Both numbers
mainly influence the probability with which a customer buys a vehicle from
the lot, which is listed as “Immediate delivery.” The results show that the
number of dealer-ordered configurations is more important than a very high
number of available vehicles at the lot. The two OTD time values represent
mean numbers, taking into account all customers or only the ones that do not
purchase an available vehicle. We choose to order nine different configuration
types and to keep the amount of available vehicles in the range between 60 and
120 as a consequence of the results. The actual number of available vehicles
indirectly depends on other model parameters and can thus not be chosen
directly. The new OTD time of 9.99 days represents a 60% improvement.

15.3.2 Order Scheduling at the Plant

At the plant there are two obvious details that can be changed for a smaller
OTD time. First, customer-ordered vehicles should be processed with priority
over the ones that will be stored in the dealer lot. In addition to that it is
possible to change the order scheduling scheme from once-a-week to daily.

Figure 15.9 shows the updated plant model. The delay between two suc-
cessive firings of transition StartSchedule is changed to 86 400 s. The only
visible difference is that scheduling and production start is now individually
done for customer orders (trailing C) and dealer orders (trailing D in names).
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Fig. 15.9. Plant model with customer order priority

The two scheduling transitions can only be activated for the appropriate or-
der tokens due to their guard functions and thus sort the order tokens into
the two places WaitingC and WaitingD. Production of dealer-ordered vehicles
(transition StartProductionD) may only start if there is no waiting customer
order.

This change has the following influence on the performance measures. The
mean number of available vehicles is 124.4 and 55% of customers directly buy
a vehicle from the lot. OTD time of all customers drops to 8.37 and the time
for waiting customers to 18.62, an improvement of 16%.

15.3.3 Truck Transport of Customer-Ordered Vehicles

To reduce the average OTD time we need to concentrate on the OTD time
of waiting customers, because the percentage of immediate deliveries could
only be increased by storing more vehicles with additional configurations in
the dealer lot. Other means of vehicle transport are considered for this rea-
son. Specialized trucks for vehicles will be responsible for the transport be-
tween plant yard and dealer lot. However, because of the higher cost, this will
only apply to customer-ordered vehicles. Train transport is chosen for dealer-
ordered vehicles and in cases where there is no truck available for transport.

An additional type (color) Truck is introduced into the model. It has six
attributes: V1, V2, V3, V4, and V5 denote the vehicles that are stored in the
truck token and are of type Vehicle. Attribute Num contains the number of
vehicles that are loaded on the truck currently.
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Fig. 15.10. Vehicle logistics with truck and train transport

Figure 15.10 shows the updated logistics submodel including truck trans-
ports. The upper row of transitions and places models train transport as in the
previous submodel version shown in Fig. 15.6. However, vehicles are scheduled
for train transport only if they are either dealer-ordered or if there is currently
no truck available for transport.

The lower part of the figure shows the truck logistics behavior. N trucks
are available in place Loading initially. When fully loaded with five vehi-
cles, transition StartFullTruck fires and puts the truck token into place
TrucksToDealer. The driving time is modeled by transition DriveToDealer
with infinite server firing semantics and a delay that is 250 000 s plus an ex-
ponentially distributed part with mean 50 000. This models the shorter and
less variating transport time with respect to train transports. Unloading of
trucks happens in place Unloading, from where empty trucks drive back to
the plant as shown in the model.

Loading and unloading of vehicles onto trucks is specified in the submod-
els LoadTruck and UnloadTruck. Both are quite similar; therefore, only the
loading case is shown in Fig. 15.11. There are five transitions that model the
loading of one vehicle each, because of the five vehicle slots on the truck. Any
one of the transitions takes a vehicle token from the plant yard and copies
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Fig. 15.11. Vehicle logistics: Loading of trucks

its information into the space that the transition is responsible for. The truck
token is removed from place Loading during the firing and put back with the
additional vehicle information later. The number of vehicles is updated as well.
Only customer-ordered vehicles are taken into consideration, which is speci-
fied in the guard functions. This is not strictly necessary here, because other
tokens are removed from PlantYard immediately by ScheduleForTrain.

An important issue is to have almost always a truck available for load-
ing of vehicles, because they otherwise need to be transported by train. The
probability that a truck is waiting in place Loading has been evaluated for dif-
ferent numbers of trucks in the logistics network. Its limiting value for bigger
numbers of trucks is obviously one. Figure 15.12 shows the results graphically.

A sensible number of trucks for the example can be chosen based on the
resulting OTD times. Figure 15.13 depicts mean OTD times for all and for
waiting customers depending on the overall number of trucks. About 15 trucks
are necessary to achieve the minimum OTD time of 5.92 days, which is an
improvement of 29%. The mean OTD time of waiting customers is 12.9 days.

Another interesting evaluation shows how the OTD times are distributed
for different numbers of trucks. Figure 15.14 shows probability density func-
tions for selected truck numbers, ignoring all zero OTD times. The curves start
at the left with the remaining probabilities that a waiting order is fulfilled by
an incoming dealer-ordered vehicle, which has not been available before. The
peak value at 12.5 is due to the mean delays of production and transport,
while the stochastic influences lead to the distribution around this value. For
smaller number of trucks the transport time is heavily influenced by the long
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and variating train transport, resulting in a much flatter curve without the
characteristic peak.

Notes

The application example has shown that strategic decisions during the design
of a supply chain can be efficiently aided using a model and performance
evaluation. The mean OTD time for customers as the significant measure for
our experiment could be improved from about 25 to less than 6 days in the
model.

The chapter is based on results of an industrial project, in which the
specific class of colored stochastic Petri nets of Sect. 6 has been developed
and implemented in the software tool TimeNET (Sect. 12.1). The goal of the
project was to model and analyze supply chain issues of a major U.S. vehicle
manufacturer. Background material has been presented in [172,331,363].

Generalized stochastic Petri nets are used for modeling and analyzing sup-
ply chain networks in reference [272]. Make-to-stock and assemble-to-order
systems are compared in terms of total cost.

A toolset for modeling and analysis of logistic networks is presented in
Bause [19]. Another software tool that can be used to model and analyze
logistic systems is ExSpect [312], which uses hierarchical colored Petri nets.

The discrete behavior of logistic systems is modeled by timed Petri-Nets
with individual tokens in Lemmer and Schnieder [221]. The application of
timed colored Petri nets to logistics is also covered in van der Aalst [1].



16

Model-Based Design and Control
of a Production Cell

Support for the efficient design and operation of manufacturing systems
requires an integrated modeling, analysis, and control methodology as well
as its implementation in a software tool. Colored Petri nets are able to cap-
ture the characteristic features of manufacturing systems in a concise form.
Stochastic as well as deterministic and more general distributions are neces-
sary and thus adopted for the firing times of transitions.

Different evaluation techniques are available for an efficient performance
and dependability prediction: direct numerical analysis, approximate analysis,
and simulation. Finally, the model can be used to control the manufacturing
system directly. There is no need to change the modeling methodology, thus
avoiding additional effort e.g., for model conversion.

The chapter demonstrates the modeling, performance evaluation, and con-
trol of a production cell using variable-free Petri nets (cf. Sect. 6.5). The con-
sidered application example is described in Sect. 16.1. Its vfSCPN model is
presented in Sect. 16.2.

The throughput of the example is derived using the iterative approxi-
mation technique introduced in Sect. 8, and results are compared with those
obtained by standard methods. Online control of the production cell using the
model is presented in Sect. 16.4, before some final notes are given. The soft-
ware tool implementation of the described methods is discussed in Sect. 12.1.

16.1 A Production Cell Application Example

This section describes the application example that is used in the remainder of
the chapter. It is a manufacturing cell built of parts from the “Fischertechnik”
construction kit for education and research purposes. Figure 16.1 shows the
system and Fig. 16.2 the layout. The application example has been chosen to
demonstrate the benefits of model-based evaluation and control.

In the considered production cell, new work pieces are initially stored in
the high bay racking on pallets. The rack conveyor can fetch one of them and
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Fig. 16.1. The considered production cell
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Fig. 16.2. Overview of the modeled system

deliver it to one of the pallet exchange places. A gantry crane may take it to
the first conveyor belt. Three of these belts move work pieces from one process-
ing station to another. There are two drilling stations, the second one having
three different interchangeable drilling tools. The last station is a milling ma-
chine. Work pieces stay on the conveyor during processing. After leaving the
machines, they arrive at a turn table. This table puts them into position for
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the rotary picker arm, who takes the work piece to the right pallet exchange
place. From there it is brought back to a slot in the high bay racking by the
rack conveyor.

Exchange of unprocessed and finished work pieces with the world outside
the production cell takes place via the rack storage. In the following it is
assumed that work pieces have to be machined by the two drilling machines
and the milling machine, in this order. Work pieces move counterclockwise
through the system.

The production cell example comprises 22 motors and 84 sensing devices
altogether. For the online control they can be accessed through a standard
RS 232 serial communication interface.

16.2 Production Cell Modeling with vfSCPN

The application example is modeled with variable-free colored Petri nets,
which have been covered in Sect. 6.5. Simple Petri nets would be too restric-
tive because of the different production steps that need to be modeled, while
the full expressional power of colored Petri nets is not necessary.

Two color types are defined for the application area of manufacturing
systems: Object tokens model work pieces inside the manufacturing system,
and have the product name (name ) and the current state (step ) as attributes
(both have the base type string ). Elementary tokens as they are known from
simple Petri nets are used to model states of resources. Places can contain only
tokens of one type or color; a place marking is thus a multiset of the sort of
the type. Places are drawn thicker to mark them as corresponding to object
tokens. Types of places are thus not written into the model figures. The model
is hierarchically structured using substitution transitions. One of the refining
submodels is described after the main model explanation.

The used net class and restriction to two place (and token) types strongly
encourages the modeler to describe the system as it is structurally. This means
that e.g., a buffer should be modeled by exactly one place with the appropriate
capacity. One location of parts (one active resource) should not be modeled
with more than one place (transition). However, if a complex manufacturing
system is modeled, one can also start at a higher level of abstraction, e.g., one
production cell is modeled by a transition without further details. Later on,
this transition could then be changed into a substitution transition, which is
then hierarchically refined by submodels at lower levels of hierarchy. Besides
that, the degree of abstraction is left to the modeler.

16.2.1 Main Hierarchical Model

The example is modeled as a vfSCPN in this section. Structural informa-
tion of the production cell is considered first, while the integration of work
plan information (i.e., the processing steps and their sequence) is covered in
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Sect. 16.2.3. This means that for the moment no transition details about the
color of removed and added tokens is required in the models, as it will be
added later on.

Figure 16.3 shows the top level (the prime page) of the model. Its compo-
sition follows the layout of the modeled system depicted in Fig. 16.2. Please
note that this and all subsequent model figures show the system after a coun-
terclockwise rotation with respect to the layout sketch in Fig. 16.2.

Places model buffers and other possible locations of work pieces. Place
rack corresponds to the rack storage, places exchpl1 and exchpl2 to the
pallet exchange places, and place turnpl to the turn table. The remaining
four places represent locations of work pieces on the conveyors, which are
directly in front of the machines or the gantry crane. As described earlier,
input and output of work pieces takes place through the rack storage and is
modeled with transitions input and output.

In principle, there are two different operations that can be performed:
transport and processing of work pieces. The former corresponds to moving
a token to another place, while the latter is modeled by a change in the
color of the work piece token, specifically of the step attribute. Transitions
modeling machines specify processing steps that only change the token color.
This is emulated by removing the former token from the place and instantly
adding a token with the new color by firing the transition. Therefore, many
transitions and places are connected by arcs in both directions (loops), which
are conveniently drawn on top of each other and thus look like arcs in both
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directions. The shown structural model contains all possible actions of the
resources, even if they are not used for the processing. The gantry crane
could e.g., move work pieces from the conveyor to the exchange place as well.

Transitions with thick bars depict substitution transitions, which are re-
fined by a submodel on a lower level of hierarchy. The next subsection shows
such a refining submodel for the rotary picker arm (transition picker). Sub-
stitution transitions are e.g., used to describe the behavior of a machine with
more detail during a top–down design. Submodels from a library of standard-
ized building blocks (templates) can be parameterized and instantiated while
refining the model [344]. This alleviates the creation of complex manufacturing
system models, where many structurally similar parts can be found.

Transition rconv contains the model of the high bay rack conveyor, while
transitions gcrane and picker correspond to the gantry crane and rotary
picker arm, respectively. For the transport of a work piece from one machine
to the next, two of the three conveyor belts have to operate simultaneously.
All three conveyors are, therefore, treated together as one transport facility
and are modeled by transition convs. Thus, their synchronization is hidden
at a lower level and can be specified together. The meaning of the remaining
model elements should be clear from the layout figure.

16.2.2 Refined Model of the Rotary Picker Arm

The Petri net model shown in Fig. 16.4 is a hierarchical refinement of the
substitution transition picker in Fig. 16.3. It specifies the inner behavior of
the rotary picker arm as well as the correlated control of the turn table. The
system states of the rotary picker arm are modeled by elementary places and
arcs (drawn thin in Fig. 16.4). Possible locations of work pieces are modeled
by the object places TurnTable and PalletExch (drawn thick). Because these
places are interface places to the upper model level, they are depicted with
dashed circles. They refer to the places turnpl and exchpl2 on the upper
level, respectively.

Transitions having names beginning with G describe actions of the picker
arm gripper (lower, close, raise, open). The ArmTurn transitions model the
turning of the picker arm, and the turn table is described with transitions
named TTurn.

The rotary picker arm can execute two useful actions: take a work piece
from the turn table to the upper pallet exchange and the reverse. The current
state of the picker arm (and of the turn table) corresponds to the location of
the elementary token in the model. Figure 16.4 shows the state after initial-
ization, where the token is in place Idle.

Either one of the two immediate transitions StartF and StartB can fire if
the resources are idle, thus starting one of the two possible transport actions.
The decision is made by firing guards (marking dependent boolean expres-
sions) of the two transitions, which are added later depending on the work
plan information. This ensures that the picker arm is only activated for useful
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Fig. 16.4. Refined model of the rotary picker arm

transport activities. After the firing of one of the two starting transitions,
the corresponding transport action begins. The different transitions become
enabled and fire in succession. They describe individual steps of each trans-
port. Actions that may be performed concurrently are modeled that way, e.g.,
TTurnB2 in parallel with ArmTurnB2 and its successors after StartB has fired.

16.2.3 Integration of Work Plan Information

The model presented so far only describes structural information of the pro-
duction cell, i.e., properties of resources and transport connections. The full
production cell model needs to capture work plan specific information as
well. This can be done using the transition modes of vfSCPN (cf. Sect. 6.5).
Every mode corresponds to one individual way of how the transition behaves,
including all necessary information such as input and output tokens and delay.

Work plan information could be added to the model manually, which is a
rather tedious task for complex applications. A method to model work plans
with variable-free colored Petri nets in a way similar to the manufacturing
system structure has been introduced in references [339,354,361]. The struc-
tural model describes the abilities and work plan independent properties of
the manufacturing system resources, such as machines, buffer capacities, and
transport connections.
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Work plan models specify the work piece dependent features of the manu-
facturing system. The different model parts are automatically merged result-
ing in a complete model with the algorithm of [339,354,361]. The final model
then includes both the resource constraints of the system and the synchro-
nization of the production steps.

Figure 16.5 shows the first part of the work plan model for the running
example. This model describes the sequence of operations and transports for a
work piece A at the highest level of hierarchy. Each step can only be carried out
by a resource that is available in the manufacturing system layout. Therefore,
only transitions, places, and their connecting arcs from the structural model
can be used here. Arc inscriptions show the name (A) and processing state
(unpr or drilled) of the work piece, separated by a dot. These two inscription
parts refer to the name and step attributes of the product tokens. It is always
possible to use this simplified arc inscription notation because every transition
occurrence in a work plan model has exactly one transition mode. It should
be noted, however, that the same (structural) transition may appear several
times in such a model, possibly resulting in different transition modes in the
complete model.

A work plan model usually consists of a simple succession of transitions
and places. An exception is the modeling of alternative routes, assembly, and
disassembly operations. More than one input or output arc is connected to
a transition then. Although it cannot be seen immediately in Fig. 16.5, an
assembly operation is also needed for the example work plan. Each work piece
is transported and processed while being fixed to one pallet. For an input of
a new work piece into the rack storage, there has to be an empty pallet
in it (place rack contains a token of color P.empty). The input operation
(transition input fires) removes this token and puts back a token with color
A.unpr (i.e., unprocessed). The inverse operation is carried out by transition
output.

A pallet without a mounted work piece has no different states. The trans-
port strategy of empty pallets is described in an additional work plan model,
which is not shown here.

After the structure and work plans have been modeled with individual
vfSCPNs as described earlier, a complete model is generated automatically.
This is done by adding the information contained in the work plan models
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Fig. 16.5. Part of the work plan model
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to the structural model. Each transition of the structural model is extended
with descriptions of its different modes. For every transition mode, the in-
put/output behavior, firing time distribution, and guard function may be
specified. Every time a transition appears in a work plan model, a new tran-
sition mode is created. Thus, the resource constraints that are imposed by
the structure and the synchronization of the work plans are compiled into one
model. The resulting model contains all necessary information from the struc-
tural and work plan models; details are covered in Zimmermann et al. [339].

Figure 16.6 shows the resulting inscriptions for two transitions of the model
in Fig. 16.4 as an example. Firing of StartF initiates a transport of a product
after the last processing step (A.milled) from the turn table on a pallet
(P.empty) at the exchange place of the high-bay racking. The guard of the
immediate transition ensures that this operation is only started if the right
product and pallet are available. Transition GRaise2 is the step of the picker
arm to which the actual state change of product tokens is attached in the
model. The ready product (A.milled) is taken from the TurnTable and put
on an empty pallet in place PalletExch. The empty pallet token there is
removed and substituted by a A.finished token, which models a finished
product on a pallet.

16.3 Performance Evaluation

Performance and dependability of the manufacturing system example is evalu-
ated based on the model to answer design questions. Throughput, utilization,
work in process, and other properties of a certain layout can for instance be
derived. Different variations of the system and their resulting performance
and dependability measures can thus be computed and compared. The aim
of this investigation is to obtain a better understanding of the correlations
between details of the manufacturing system (e.g., the buffer capacities) and
the main performance measures (like the throughput).

For the application example, the aim is to evaluate the throughput of
work pieces. A performance measure is defined in the model, which gives
the throughput of all finished work pieces per hour. This can be done using
the throughput of a transition that each work piece passes exactly once like



16.3 Performance Evaluation 333

output. The mean number of transition firings per time unit is measured for
this reason with a performance variable #output in steady-state.

Direct numerical analysis, approximate analysis, or discrete event simu-
lation can be used to obtain the desired measures in steady-state from the
model. Advantages and disadvantages of the three algorithms depend heavily
on the actual model and the performance measures of interest (state space
size, numerical stiffness, rare events, etc.). Unfortunately, thus no automatic
decision can be made of which method will be the best one. Already the def-
inition of “best” at least necessitates the specification of a balance between
required speed and result exactness. Therefore, the modeler decides which
method is applied, or can compare the results of different ones, as it is done
for the application example in the following.

The throughput of the modeled manufacturing system is computed with
different algorithms that were explained in Part II, facilitating a comparison of
results and computational efforts. The software tool TimeNET (cf. Sect. 12.1)
is used for all evaluations. The example is used here especially to demonstrate
the iterative approximation technique of Sect. 8. The intermediate steps are
thus shown in the following. For the standard numerical analysis and simula-
tion techniques only the results are shown for a comparison further below.

16.3.1 Partition and Aggregation

Following the steps of the approximate performance evaluation method
described in Chap. 8, the original model is partitioned into subsystems SS i

first. These subsystems are aggregated and used to build low-level systems LS i

and a basic skeleton BS as the basis for the iterative approximation technique.
This section shows the results of this step for the running example.

The partition step divides the original main model (Fig. 16.3) into submod-
els, which can be selected according to the substitution transitions. However,
the submodels of the drilling and milling machines are considered together
with the conveyor system and are not used as individual subsystems because
of their simple structure. In fact, because of the path-preserving aggregation,
their internal behavior can later be completely aggregated (cf. the basic skele-
ton shown in Fig. 16.8). In our example, thus all remaining four transitions
(besides input and output) are subsystems. Decisions about a partition can
also be done based on an estimation of the submodel state space size [171].

The partition thus results in four subsystems for the example, namely
for rconv, gcrane, picker, and convs (the latter together with the three
machine-modeling transitions). Figure 16.7 sketches the chosen partitioning.
The places that are neighbors of subsystems constitute the set of buffer places,
in our example rack, exchpl1, exchpl2, turnpl, and convplpl.

The next step is the aggregation of all subsystems following the rules
described in Sect. 8.2.2. Every subsystem SS i is aggregated individually.
It leads to four aggregated subsystem models SS∗

i , which are substantially less
complex and thus have a smaller potential state space. The low-level systems
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picker turnpl

rconv convs

Fig. 16.7. Partition of the example model

LS i are derived in the following step. For a subsystem SS i, the corresponding
LS i consists of the original SS i and all other subsystems j ∈ {1, . . . , n}, j �= i
in their aggregated versions SS∗

j .
Figure 16.8 shows the basic skeleton BS of the example, where all subsys-

tems SS i are aggregated. Only transitions input and output are kept from
the original model in all low-level subsystems as well as the basic skeleton.

The resulting transition modes are not shown in the figure for simplifica-
tion. The model part corresponding to the rack conveyor is covered in more
detail (rc is short for rconv in the model). In the original model, there are
five path combinations between the buffers exchpl1, exchpl2, and rack. New
work pieces (A.unpr) are moved from rack to exchpl1, while empty pallets
are transported both from exchpl1 and rack to exchpl2. For empty pallets,
there is an additional way from exchpl1 to rack. If the work pieces are fin-
ished, they are taken from place exchpl2 to rack. Thus, the transportation of
both unprocessed work pieces and empty pallets between rack and exchpl1
is possible. Therefore, it is important to distinguish between different colors
in the rconv subsystem (see Table 16.2) during the throughput computation.

The five aggregated paths can be found in the aggregated version: (rc in1,
rc out2) represents the path of unprocessed work pieces and empty pallets
between rack and exchpl1 (using different colors), while (rc in2, rc out3)
and (rc in2, rc out1) represent the transport of empty pallets to exchpl2
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Fig. 16.8. Basic skeleton of the manufacturing system example

and rack, respectively. The path (rc in3, rc out1) corresponds to the trans-
port of finished work pieces to rack.

16.3.2 Performance Evaluation Results

The iterative approximation technique of Chap. 8 has been applied using the
derived low-level systems and basic skeleton of the example. Table 16.1 com-
pares computational effort and achieved accuracy with numerical analysis and
simulation. The CPU times were measured on a Sun Ultra 5 workstation run-
ning at 333MHz.

For the simulation (see Chap. 9), three runs with different accuracies have
been carried out. Table 16.1 shows confidence level and relative error in per-
cent. It is obvious that the computational effort increases dramatically with
the desired accuracy. The computation took about 70min for a relative error
of 1% .

The numerical analysis method (see Chap. 7.3.2) yields the most exact
results. For the modeled system, it calculates a throughput of 19.6692 work
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Table 16.1. Accuracy and computational effort of evaluation techniques

Technique Numerical Iterative Simulation
analysis approx. 99%, 1% 98%, 2% 90%, 10%

Throughput 19.67 19.12 19.59 19.48 20.75
Error 0% 2.8% 0.4% 1.0% 5.5%
CPU time (s) 1625 186 4 176 1 104 56

Table 16.2. Results after the final iteration of the approximation algorithm

Subsystem Place p Sojourn time Λ(t) in BS Sojourn time
SSk (Color) for p in LS t∈ OT k in LS for p in BS

rconv P rc
(A.finished) 0.095063 0.0227272 0.095605
(A.unpr) 0.117001 0.0555555 0.116851
(Pallet.empty) 0.095063 0.0243902 0.095605

gcrane P gc 0.183017 0.0294117 0.183017
convs P co 0.252994 0.0217666 0.252995
picker P pi 0.139954 0.0384615 0.139954

pieces per hour. The computation took about 27min and generated a Markov
chain with 41 279 states for the original model. The approximation algorithm
only took 3 min to finish despite its more complex algorithm, because the sizes
of the reachability graphs and thus CTMCs it had to cope with were about
one magnitude smaller than for the original model. The state space sizes of the
low-level systems ranged between 306 and 1 128 states, while the basic skeleton
only has 15 states. For the initialization of the algorithm, service rates of all
output transitions of the aggregated parts in the low-level systems and the
basic skeleton were set to 1. Convergence was, nevertheless, reached after only
three iterations. Table 16.2 shows the computed sojourn time of tokens in the
preset places of the output transitions. With an error of less than 3%, the
approximation algorithm achieves a good tradeoff between result quality and
computational effort.

In addition to that the influence of the rack conveyor speed on the overall
throughput was evaluated. All rack-related delays were multiplied by a factor
in the range from 0.4 up to 5.0. Figure 16.9 shows the resulting throughput
values.

It follows from the results that the rack conveyor is the main bottleneck
of the example system, which is in accordance with observations of the real
system. For a planned real-life production system, this would surely be not
acceptable, because the usually expensive processing stations should be uti-
lized more than a transport facility. From the resulting throughput values and
the associated profit of work pieces as well as additional costs for a faster rack
conveyor, the right rack conveyor can be selected.
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Fig. 16.9. Throughput vs. rack conveyor speed

16.4 Model-Based Online Control

Motivated by the use of separate models for structure and work plans of a
production system, the task of designing the control system can be divided in
two steps. The specification of the work plans ensures that the manufacturing
system produces (in the model) the desired products. However, the afterwards
automatically generated main model does not necessarily have to be free of
deadlocks or optimal with respect to some performance measures like the
throughput. The model can be analyzed and the problems detected, leading
to control strategies that improve the system behavior.

A controller can only forbid activities in any state of the production system
that would otherwise be possible. This corresponds to disabling transitions
inside the model. Using marking dependent guard functions, this can be done
easily with the used class of Petri nets. The guard function of a transition
(or of one firing possibility) is a boolean function of the net marking, which
has to be true to allow the enabling. The second step of the control design
thus corrects and optimizes the production process. Finally, the model-based
online control ensures the execution of the specified behavior.

The control technique explained in Chap. 11 has been used to actually
control the application example. It is briefly explained here using the submodel
of the rotary picker arm as shown in Fig. 16.4.

Table 16.3 lists the motors and sensors that are present in the rotary
picker arm and the turn table (compare the layout in Fig. 16.2), which must
be controlled together. In the case of the Fischertechnik application model,
every motor movement has an associated sensor for the final position. These
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Table 16.3. Motors and sensors of the rotary picker arm

Motor Direction Final position sensor

Turntable Forward TTurnIsFront
Backward TTurnIsBack

GripperPosition Open GripperOpen
Close GripperClosed

GripperHeight Raise GripperIsUp
Lower GripperIsDown

ArmTurn Forward ArmIsFront
Backward ArmIsBack

Table 16.4. Picker arm transitions and their associated control signals

Control output

Transitions Motor Direction Sensor input

TTurnB1,2 Turntable Backward TTurnIsBack
TTurnF1,2 Turntable Forward TTurnIsFront
GOpen1,2 GripperPosition Open GripperOpen
GClose1,2 GripperPosition Close GripperClosed
GRaise1..4 GripperHeight Raise GripperIsUp
GLower1..4 GripperHeight Lower GripperIsDown
ArmTurnF1,2 ArmTurn Forward ArmIsFront
ArmTurnB1,2 ArmTurn Backward ArmIsBack

sensors are hard-wired such that no movement is possible beyond the physical
constraints. It is, therefore, not necessary to switch off a motor explicitly from
the model-based control.

The different steps for the two possible transport actions (forward and
backward movement of a part) are described by sequences of elementary
transitions and places. Each timed transition corresponds to one control-
lable activity. After the inclusion of the work plan information in the tran-
sition modes of the model, transitions StartF and StartB can only fire if
tokens that correspond to work pieces to be transported are located in places
TurnTable and PalletExch. Firing guards (marking-dependent boolean ex-
pressions) of the transitions are used for this. It ensures that if the work
plan models are being specified correctly, the rotary picker arm is only acti-
vated for useful transport orders. Modeling errors or wrong transport strate-
gies leading e.g., to deadlocks or bottlenecks can be detected with a prior
analysis.

The corresponding transport action begins after the firing of one of the
two starting transitions. Each transition describes the individual steps of each
transport, and have input and output signals associated to them. Table 16.4
lists the transitions in the model that have input or output signals attached.
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There are always two or three transitions with identical input and output
signals, because the possible elementary movements are necessary in both
transport movement sequences. As an example, transition TTurnB1models the
movement of the turn table into the backward position. When the transition
becomes enabled, the turn table motor is switched on by the associated output
signal. When the final position is reached, the corresponding sensor TTurnIs-
Back is activated and the input signal leads to the firing of the transition.

Notes

Manufacturing and automation systems are a classic application area of Petri
nets; see [88,270,276,286,292,294,336] for surveys. Two popular extensions in-
cluding stochastic timing are stochastic Petri nets (SPNs, [5]) and generalized
stochastic Petri nets (GSPNs, [53]). Both have been used for manufacturing
system modeling and evaluation [7,295]. However, the use of these simple Petri
net classes requires that if more than one product is processed by a machine,
the machine’s model has to be replicated because of the lack of distinguish-
able tokens. In general, using nets without distinguishable tokens leads to
models that do not reflect the actual structure, making the models less un-
derstandable. Simple Petri nets, therefore, do not appear to be adequate for
the modeling of more complex production systems [339].

Therefore, colored Petri nets (CPNs, [188]) have been applied to manu-
facturing systems. Viswanadham and Narahari [322] used colored Petri nets
for the modeling of automated manufacturing systems. On the basis of these
models, deadlocks can be found by analyzing the invariants. A colored Petri
net model of a manufacturing cell controller is described by Kasturia, DiCe-
sare and Desrochers [192]. After obtaining its invariants, the liveness of the
model is checked.

Ezpeleta and Colom [100] generate a model that is used for deadlock pre-
vention control policies. Mart̀ınez, Muro and Silva [233] show how the coor-
dination subsystem of a flexible manufacturing system can be described by
a colored Petri net. The obtained model is embedded into the surrounding
levels of control (local controllers and scheduling subsystem), and a terminol-
ogy based upon the Petri net colors is used for the interaction. Analyzing the
model detects deadlocks, decision problems, and gives performance measures
that depend on variations in the system being modeled.

The independent modeling of structural and functional system parts is of
high importance for the modeling of complex production systems. Only then
it is possible to change parts of the work plans without having to redesign the
whole model. Villaroel, Mart̀ınez and Silva [316] proposed to model work plans
with colored Petri nets, while for the structural model predefined building
blocks are used.

Simple Petri net models of complex production systems tend to be large
as well as hard to understand and maintain. Colored Petri nets overcome this
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problem with their more sophisticated modeling capabilities. A drawback is
the need to define textual elements like color types and variables. The class
of variable-free stochastic colored Petri nets used throughout this chapter has
been introduced especially for the modeling of manufacturing systems [339,
354, 361], aiming at resolving this problem for a specific application domain.
An industrial case study can be found in reference [340]. Later work showed
the applicability to workflow systems [83, 85].
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Summary and Outlook

This text takes a look at stochastic discrete event systems from various view-
points. It intends to give an overview of models classes, algorithms taking
a model as input, and what benefits we may finally get from a model. Sev-
eral application examples are presented in Part III to motivate advantages of
model-based design especially for complex systems. Examples and case studies
moreover aim at covering a broad range of model classes as well as engineer-
ing issues, which can be supported based on a formal model. The importance
of stochastic discrete event systems as a family of models and their applica-
tions should be evident from the literature available today and the number of
projects based on it.

A variety of model classes for their description have been developed in the
past. Probabilities of random actions and randomly distributed times have
to be incorporated in the models, which were in part originally developed as
qualitative models only. The text covers some of the most prominent model
classes allowing a derivation of measures related to performance, reliability, or
timeliness. Part I introduces automata, queuing models, and simple as well as
colored Petri nets. The selection of “the” right model class, a good abstraction
level, as well as how to finally construct a specific model is, however, impossible
with a formal algorithm. It is preferably learned from experience or with
intuitive examples.

Despite the wealth of model classes and their variants, we believe that the
general understanding of stochastic discrete event systems allows a unified
treatment. An abstract model class SDES has been defined to capture models
that are expressed as automata, Petri nets, or other families of models. The
goal was not a definition allowing any imaginable model; in fact, details of
existing model classes were intentionally ignored to simplify the presentation.
This is, however, not a general restriction, as the SDES model class could be
extended accordingly. A similar approach has been taken in the development
of the Möbius tool [81,82]. The introduced SDES model class extends this work
by allowing variants of actions and enabling degrees among others. Colored
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Petri nets and other complex models can thus be captured. The corresponding
translations of all presented model classes is formally given in the text.

Several algorithms are then presented in the second part of the text, based
on the abstract SDES model class. The approach of using one model class as a
kind of abstract interface between modeling and evaluation allows to extend
the framework by new model classes and algorithms without touching the
other side. A serious drawback is, however, that specialized analysis algorithms
for selected model classes can not be used. An example are product-form
solutions of queuing networks.

The behavior of each model class is specified indirectly by the definition
of the stochastic process resulting from the corresponding SDES model. Algo-
rithms for the standard numerical analysis as well as discrete event simulation
were given in the context of SDES. Further contributions include an iterative
approximation technique, a distributed simulation method, as well as an effi-
cient indirect optimization technique.

The software tool TimeNET has been used for the case studies. It is devel-
oped in the group of the author, and implements efficient evaluation methods
for several classes of stochastic discrete event systems.

Although several fields of research in stochastic discrete event systems have
reached a certain maturity, there are numerous open problems to be addressed
in the future. From the modeling point of view, new model classes or variants
of existing ones are required to capture the special needs of restricted appli-
cation areas. Colored Petri nets seem to be general enough to capture very
complex systems. Specialized subclasses may pave the way for an improved
industrial acceptance, just like the evolution of general simulation software
shows.

Another important aspect regards the modularity of models. With the
number of aspects to be considered in a system, and the shared work in
a design team, we cannot expect that a single formalism will be sufficient
to describe a complex system. Modular multiformalism approaches aim at
combining model parts from different model classes. In the future, it appears
to be more important to develop interfaces and analysis algorithms that cope
with heterogeneous models than to develop additional model classes. A vision
of design engineering is that the supplier of a system part delivers a behavioral
model together with it, which can then be “plugged into” the model of the
appliance it is assembled to.

Another main area of future efforts comprises algorithms for the evaluation
of models. It is comparably simple to develop a new model class; its analytical
tractability is, however, often an open issue. Simulation and numerical anal-
ysis based on the full reachability graph are two extremes that are available
today. Both have their advantages in certain environments. In the future, it
is expected that numerical analysis will go beyond its current limits by the
use of structured representations of the reachability graph and transition ma-
trix, and even further with condensed representations of the solution vector
itself. The boundaries of numerical analysis techniques with respect to more
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general delay distributions are well understood today, leaving only little hope
for the development of efficient general solution algorithms. Approximation
techniques with controlled accuracy are required, which differ between im-
portant and insignificant parts of the reachability graph. We expect the clear
boundaries between exact analysis and single-path simulation to fade with
combination techniques.

Theoretical developments will require an efficient implementation in soft-
ware tools. Industrial acceptance is, however, only achieved with a graphical
user interface as an intuitive modeling environment as well as robust and ef-
ficient evaluation algorithms. Important steps for this development include
international standardization efforts of Petri nets, the definition of an ex-
change format for software tools, and the advent of software tools supporting
multiformalism models.
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|A| Number of elements of a multiset A
A/B Restriction of a set A to elements of B
‖ Concurrency relation between events
x• Postset of x
•x Preset of x
→ Relation between events, which is true if the first one may

causally affect the second one
−→ It follows that
σ V−→σ′ Firing sequence V leading from a state σ to σ′

1 vector with all entries equal to one, with appropriate size
2A Power set of a set A, i.e. the set containing all subsets of A
A A stochastic automaton
a An action of a SDES model
A� Set of actions of a SDES
Activity An enabled action variant together with its scheduled exe-

cution time or remaining activity delay
Arr SDES actions that correspond to customer arrivals in a queu-

ing network
as Action state: a set of currently active action variants to-

gether with their remaining activity delays
AS Set of all possible action states AS
au One atomic unit of a distributed simulation
AU Set of atomic units of a distributed simulation
AUaffected Set of atomic units that are influenced by an action in a

distributed simulation
AV Set of all possible action variants v of a SDES
AV exp Action variants with an exponentially distributed delay
AV gen Action variants with an associated generally distributed

delay
AV im Action variants with zero delay
B Set of {True, False}
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B Set of states in a RESTART simulation
β∗ Set of possible bindings of a colored Petri net transition
β A binding of a transition in a colored Petri net, one possible

setting of values for transition variables
BS Basic skeleton
C Matrix of conversion factors (numerical analysis)
C A cut in a distributed simulation
C Color (type) of a place, variable or expression in a colored

Petri net
C Incidence matrix of a Petri net
Cap Capacity of a place; maximum allowed number of tokens in

it
ce An event of the complete stochastic process CProc; marks

the execution of an action variant or activity
χ+ Upper bound on the throughput of a Petri net transition
χ− Lower bound on the throughput of a Petri net transition
χ� Approximation of the throughput of a Petri net transition
χ Mean throughput (number of firings) of a Petri net transi-

tion
Cond� Condition function of an SDES; allows or forbids to enter

states
cost Optimization function or cost function
CPN Colored Petri net
CProc Complete stochastic process underlying a SDES
cs Complete state of the stochastic process CProc; contains

state variable values as well as the set of ongoing activities
(the action state as)

CS Set of all theoretically possible complete states cs of a SDES
cst An individual compound simulation time of a distributed

simulation
CST All possible compound simulation times in a distributed sim-

ulation
CTMC Continuous-time Markov chain
D

(1)
Average service demands of transitions in a Petri net

Deg Degree of concurrency of a Petri net transition, either SS or
IS

Deg� Enabling degree of an SDES action
Delay� Delay of an SDES action variant; described by a probability

distribution function
Δ Dirac impulse
DTMC Discrete-time Markov chain
e A specific event of a stochastic automaton A
E Event set of a stochastic automaton A
E {x} Expected value of x
E Event (in probability theory)
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E Event space in probability theory
E Additional boolean SDES state variables that model the en-

abling of transfer actions Trans
e An event in a distributed simulation
E Set of possible events in a distributed simulation
EC Equal conflict relation between two Petri net transitions
EMC Embedded Markov chain
Ena� Enabling function of a SDES variant
Enabled Enabling function that returns the enabled action variants

of an action for a specific state σ
ETCS European Train Control System
EvList Event list in a distributed simulation
Exec� Execution function of a SDES action variant; describes state

change
Executable Set of action variants that are actually executable in a state

σ. Differs from Enabled by considering priorities and imme-
diate versus timed delays

ExprVar Set of all expressions built from variables out of Var
F+ Set of non-negative distribution functions
f State transition function of a stochastic automaton
F (Cumulative) distribution function
Fdet Deterministic probability “distribution” function set
Fexp Exponential probability distribution function set
Fgen General probability distribution function set
F im Immediate probability “distribution” function
fI Importance function that guides a RESTART simulation
FutureEvList

cst Future part of the event list EvList with respect to a simu-
lation time cst

G Distribution function defining interevent times in a stochas-
tic automaton

G Boolean guard function that specifies which bindings of a
transition may be enabled for a state in a colored Petri net

Γ Set of feasible (or enabled) events in a state of a stochastic
automaton

Γ Average interfiring time of a Petri net transition
GSPN Generalized stochastic Petri net
I Identity matrix
I Initial state of a queuing network model
Inh Inhibitor arc multiplicities in a Petri net
IS Infinite server semantics of a Petri net transition; degree of

concurrency
K Capacity of a queuing node
Λ Delay of a transition in a Petri net; specified by a probability

distribution function
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Λ Interarrival time of customers to a queuing network; speci-
fied by a probability distribution function

LastBeforeE
cst Last event time in the event list E before a simulation time

cst
Level Level of a state in a RESTART simulation
lp A logical process of a distributed simulation
LP Set of logical processes of a distributed simulation
LS Low-level system
m′ Subsequent marking in a Petri net; e.g. after firing a transi-

tions
m+ Upper bound on the mean number of tokens in a Petri net

place
m− Lower bound on the mean number of tokens in a Petri net

place
m0 Initial marking of a Petri net
M Number of levels in a RESTART simulation
m Mean number of tokens in a Petri net place
MA Set of all multisets over A
m� Approximated value for the mean number of tokens in a

Petri net place
m A marking of a Petri net
M Set of theoretically possible markings of a Petri net
M Number of servers of the queues in a queuing network model
PV e1,e2

min Minimal path priority in a distributed simulation
mode Action mode, one of the possible sub-actions of an action
Modes� Set of action modes (of an action) for a SDES model
μ Service time of a queue in a queuing network model; specified

by a probability distribution function
mv t SDES action variable corresponding to the transition mode

selection in a vfSCPN model
N

+ Set of positive natural numbers
n Index variable of the complete stochastic process CProc
N Set of natural numbers
Node Computing node on which an atomic unit is executed in a

distributed simulation
ω Weight of a path in a RESTART simulation
OT Output transitions of a subsystem
P{σ V−→σ′} Path probability of taking the firing sequence V from state

σ to σ′

p A single place of a Petri net
P Set of places of a Petri net
P{x} Probability of x
P Matrix of state-transition probabilities
PastEvList

cst Past part of the event list EvList with respect to a simulation
time cst
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πj(q) Probability that there are j customers in queue q
Π Transition priority of a Petri net
π Vector of state probabilities
Post Forward incidence matrix of a Petri net, also used in function

form
Pre Backward incidence matrix of a Petri net, also used in func-

tion form
Pri� Priority of an SDES action
Pri�

Global Global priority of an action in a distributed simulation
PV Path priority vector in a distributed simulation
Q Matrix with state-transition rates
q One node in a queuing network model
Q Set of simple queuing systems (or nodes) in a queuing net-

work model
QN Queuing network
QS Queuing system
R

+ Set of positive real numbers 0 < x < ∞
R

0+ Set of non-negative real numbers 0 ≤ x < ∞
r Average token waiting time in a Petri net place
r Routing probability for a specific pair of queues in a queuing

network; equals one entry in the routing matrix R
R Routing matrix of a queuing network model
R Set of real numbers −∞ < x < ∞
R Number of retrials in a RESTART simulation
R Routing matrix of a Petri net
RAD Remaining activity delay
ravg� Specifies whether a SDES reward variable should be averaged

over the observation interval or not
RE Edges of the reachability graph RG
Region Model region of an atomic unit in a distributed simulation
RESTART Repetetive simulation trials after reaching thresholds
rexpr Set of considered events or states for an automaton-based

reward variable
rexpr Filter expression of a reward variable in a colored Petri net
rexpr State-dependent numerical expression or considered queue

for a reward variable of a queuing model
RFT Remaining firing time
RG Reachability graph of a SDES
rimp� Impulse reward part of a SDES reward variable
Rinst

� Instantaneous reward at a certain point of time
rint� Observation interval of a SDES reward variable
robj Reward variable object in a colored Petri net: either a place

or a transition
rrate� Rate reward part of a SDES reward variable
RRE Edge set of the reduced reachability graph RRG
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RRG Reduced reachability graph
RRS Reduced reachability set
RRSexp Subset of the reduced reachability set RRS , containing the

states where only activities with exponentially distributed
delays are active

RRSgen Subset of the reduced reachability set RRS , containing
the states where only activities with non-exponentially dis-
tributed delays are active

RS Reachability set (of states) for a SDES
RS tan Subset of the reachability set RS with tangible states
RSvan Subset of the reachability set RS with vanishing states
rtype Boolean value denoting the type of a reward variable for

a stochastic automaton; corresponds to a rate or impulse
reward

rtype Type of a reward variable in a Petri net
rtype Boolean value denoting the type of a reward variable for a

queuing model; corresponds to a rate or impulse reward
RV Set of reward variables
RV � Set of SDES reward variables
rvar One reward variable
rvar� An individual reward variable of a SDES
s(.) Step function; used for probability distribution functions
S� Set of all sorts
S� Sort function of an SDES
S Sample space in probability theory
S(q) System (or response) time of a customer at queue q
s Mean service time (delay) of a Petri net transition
SC Structural conflict: Relation between SDES actions marking

the ones with intersecting input variable sets
SCPN Stochastic colored Petri net
SDES Stochastic discrete event system
se One event of the simplified process SProc
SE Set of events that are executed at a time point in the sim-

plified process SProc
σ A state of a SDES as captured in the state variable values
σ Firing count vector of transitions in Petri net
Σ Set of all possible states of a SDES model
SignalsIn Set of input signals of a control-interpreted SDES model
SignalsOut Set of output signals of a control-interpreted SDES model
sink Imaginary sink node in a queuing network, used to model

leaving customers
EMC Subordinated Markov chain
SPN Stochastic Petri net
SProc Simplified stochastic process of a SDES
SS∗ Aggregated version of a subsystem
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SS Single server semantics of a Petri net transition; degree of
concurrency

SS Subsystem of a model
SSC Symmetrical structural conflict: Relation between SDES ac-

tions
ST Simulation time
StatesIn State inputs of a control-interpeted SDES model
StatesOut State outputs of a control-interpeted SDES model
StList State list in a distributed simulation
ST safe Safe simulation time in a distributed simulation
sv A state variable of a SDES
SV � State variable set of a SDES
SV �

affected Set of state variables that may be affected by an action ex-
ecution in a distributed simulation

SV �
input Input state variables of an SDES action

SV �
local Set of state variables that are locally known in an atomic

unit of a distributed simulation
SV �

required Set of state variables that are related to an action in a dis-
tributed simulation

T Set of all types (i.e. colors) allowed in a specific colored Petri
net

t A single transition of a Petri net
T Set of transitions of a Petri net
T (q) Throughput of queue q (rate of served customers)
t Index variable of the simplified stochastic process SProc

(continuous time)
θ State sojourn time of the stochastic process CProc
Thr Threshold of the importance function in a RESTART simu-

lation
T im Set of immediate transitions of a Petri net; i.e. with a zero

delay
TP Throughput of output transitions for a subsystem
Trans SDES actions for a queuing network model that correspond

to the transfer of a customer to a different queue
Trigger Associates triggered output signals to action variants as well

as the triggered action variants to input signals in a control-
interpeted SDES model

T tim Set of timed transitions of a Petri net, i.e. with a delay other
than zero

U(q) Utilization of a server of queue q (fraction of busy time or
number of busy servers)

UML-SC UML Statechart
UML Unified modeling language
v(1) Visit ratios of transitions in a Petri net
v One of the variables in a colored Petri net
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v Action variant — a pair of action and corresponding action
mode (a,mode)

Val0 � Initial value of a SDES state variable
Value Value of a state output in a certain state
Var Set of all variables in a colored Petri net
var� An individual action variable of a SDES
Vars� Action variable set of a SDES
VDeg� Enabling degree of an SDES action variant
vfSCPN Variable-free stochastic colored Petri net
VT Vector time in a distributed simulation
W Relative firing weight for transitions in a Petri net
W (q) Waiting time of a customer at queue q
Weight� Weight of an SDES action variant; relative probability of

execution
X∗ Set of all theoretically possible states of a queuing network
x0 Initial state of a stochastic automaton
x An individual state of a stochastic automaton A
X State space of a stochastic automaton
X(q) Queue length at queue q (number of customers)
X State of a queuing network
X Random variable
x T-semiflow of a Petri net
XML Extensible markup language
y P-semiflow of a Petri net



List of Figures

1.1 Model-based iterative design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 State, event, and sojourn time examples of the complete
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Colored Petri net example for enabling degrees . . . . . . . . . . . . . 28

3.1 Example of an automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Basic UML Statechart elements . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Composite state example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Graphical notation of pseudostates . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 UML Statechart with SPT inscriptions . . . . . . . . . . . . . . . . . . . . 56
3.6 Basic state translation example . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Translation of Statechart transitions . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Choice pseudostate and its translation . . . . . . . . . . . . . . . . . . . . 60

4.1 A queuing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 A queuing network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 First modeling step for FMS example . . . . . . . . . . . . . . . . . . . . . 81
5.2 First refinement of the FMS model . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Second refinement of the FMS example . . . . . . . . . . . . . . . . . . . . 84
5.4 Complete GSPN model of the FMS example . . . . . . . . . . . . . . . . 87
5.5 Model behavior: Markings 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6 Model behavior: Markings 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 Types of transitions in a stochastic Petri net . . . . . . . . . . . . . . . 98

6.1 Simple arc inscription example . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 More complex arc inscription examples . . . . . . . . . . . . . . . . . . . . 104
6.3 Examples of guard functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Example of a substitution transition and its refining

submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



354 List of Figures

6.5 Model behavior example: bindings . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6 Model behavior example: second marking . . . . . . . . . . . . . . . . . . 111
6.7 Notation example for variable-free colored Petri nets . . . . . . . . 119

7.1 Discrete vs. continuous timescale . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.1 Explanatory example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Initial MIMO graph of the example . . . . . . . . . . . . . . . . . . . . . . . 162
8.3 First aggregation rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.4 Second aggregation rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.5 MIMO graph after the first and second aggregation steps . . . . 164

8.6 Final aggregated MIMO graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.7 Resulting aggregated Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.8 Example aggregation of a variable-free colored Petri net . . . . . 166

9.1 Simple Petri net example with immediate transition
priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.2 An example for transition priorities . . . . . . . . . . . . . . . . . . . . . . . 182
9.3 Simple Petri net with undecidable event ordering . . . . . . . . . . . 190
9.4 Data structures of an atomic unit and their relation . . . . . . . . . 202
9.5 State sets and paths in a rare-event simulation with

splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.6 Simulation runs in a RESTART algorithm . . . . . . . . . . . . . . . . . 218

10.1 Indirect optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.2 Small Petri net example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

11.1 Drawbridge example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.2 Petri net model for the control interpretation example . . . . . . . 248

12.1 Software architecture for SCPN modeling and evaluation . . . . . 258
12.2 Interaction of ASA, bounds computation and TimeNET . . . . . 260
12.3 Sample screen shot of the graphical user interface . . . . . . . . . . . 262
12.4 Graphical result output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

13.1 Flexible manufacturing system example . . . . . . . . . . . . . . . . . . . 276
13.2 Petri net model of flexible manufacturing system . . . . . . . . . . . 278
13.3 Throughput approximation of transition InA . . . . . . . . . . . . . . . 280
13.4 Quality of marking approximation of place Pallets . . . . . . . . . 281
13.5 Profit function approximation for the FMS example . . . . . . . . . 282

14.1 Simplified ETCS communication architecture . . . . . . . . . . . . . . 290
14.2 Train distance and deadline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.3 Failure and recovery model for GSM-R communication

channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
14.4 UML Statechart for the ETCS radio link . . . . . . . . . . . . . . . . . . 298



List of Figures 355

14.5 Resulting stochastic Petri net after translation . . . . . . . . . . . . . 299
14.6 Condensed failure model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
14.7 Model of communication during moving block operation . . . . . 301
14.8 Train stop probability vs. train distance . . . . . . . . . . . . . . . . . . . 303

15.1 Sketch of supply chain entities . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.2 Main colored Petri net model of the example . . . . . . . . . . . . . . . 309
15.3 Model of customer vehicle configuration selection . . . . . . . . . . . 311
15.4 Dealership model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
15.5 Plant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
15.6 Vehicle logistics: Train transport . . . . . . . . . . . . . . . . . . . . . . . . . 313
15.7 Model of dealership with storage of popular configurations . . . 316
15.8 Popular configuration selection for dealer orders . . . . . . . . . . . . 317
15.9 Plant model with customer order priority . . . . . . . . . . . . . . . . . . 319
15.10 Vehicle logistics with truck and train transport . . . . . . . . . . . . . 320
15.11 Vehicle logistics: Loading of trucks . . . . . . . . . . . . . . . . . . . . . . . . 321
15.12 Truck availability at plant yard for loading . . . . . . . . . . . . . . . . . 322

15.13 Order-to-delivery times versus overall truck number . . . . . . . . . 322
15.14 Order-to-delivery time distributions of waiting customers . . . . 323

16.1 The considered production cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16.2 Overview of the modeled system . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16.3 Highest level of the hierarchical colored model . . . . . . . . . . . . . . 328
16.4 Refined model of the rotary picker arm . . . . . . . . . . . . . . . . . . . . 330
16.5 Part of the work plan model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16.6 Example transition modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
16.7 Partition of the example model . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
16.8 Basic skeleton of the manufacturing system example . . . . . . . . 335
16.9 Throughput vs. rack conveyor speed . . . . . . . . . . . . . . . . . . . . . . 337

Figures 14.2, 14.3, 14.6, 14.7, and 14.8 have been reprinted from the Journal of
Systems and Software, Volume 77, Issue 1, A. Zimmermann and G. Hommel:
Towards modeling and evaluation of ETCS real-time communication and
operation. Pages 47–54, Copyright 2004, with permissions from Elsevier.

Figure 13.1, 13.2, and 13.5 have been reprinted from the Journal of Intelligent
Manufacturing, Volume 12, Issue 5/6, A. Zimmermann, D. Rodriguez, and
M. Silva: A Two Phase Optimisation Method for Petri Net Models of Man-
ufacturing Systems. Pages 409–420, Copyright 2001, with permissions from
Springer.



List of Algorithms

3.1 Translation of a UML Statechart into a stochastic
Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Compute enabled action modes in a state . . . . . . . . . . . . . . . . . . 136
7.2 Update the event list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Select the activity to be executed next . . . . . . . . . . . . . . . . . . . . 139
7.4 Next-event time advance simulation of steady-state

behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.5 Next-event time advance simulation of transient behavior . . . . 142
7.6 Generation of the full reachability graph . . . . . . . . . . . . . . . . . . . 145
8.1 Iterative approximate evaluation algorithm . . . . . . . . . . . . . . . . 167
9.1 Update the local simulation clock of an atomic unit . . . . . . . . . 205
9.2 Rollback an atomic unit au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.3 Receive a message and sort it into local lists . . . . . . . . . . . . . . . 208
9.4 Optimistic distributed simulation algorithm . . . . . . . . . . . . . . . . 209
9.5 Logical process lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.6 Startup of RESTART simulation . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.7 Main RESTART algorithm for steady-state simulation . . . . . . 221
10.1 Simulated annealing for one parameter . . . . . . . . . . . . . . . . . . . . 228
10.2 Computation of approximate cost function value . . . . . . . . . . . . 242



List of Tables

3.1 Example stereotypes and tagged values . . . . . . . . . . . . . . . . . . . . 56

4.1 Settings for queuing model reward variables . . . . . . . . . . . . . . . 73

6.1 List of base types for stochastic colored Petri nets . . . . . . . . . . 100
6.2 Example token type definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Operators and their priorities in expressions . . . . . . . . . . . . . . . 108
6.4 Transition mode details of the level-crossing example . . . . . . . . 120

7.1 Types of performance measures and evaluation methods . . . . . 129

9.1 Input state variables of actions from individual model
classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.2 Affected state variables of actions . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.3 Additionally required state variables of actions . . . . . . . . . . . . . 177
9.4 Vector time and priority vector of events from Fig. 9.2 . . . . . . . 184

10.1 Approximation of throughput values for the example . . . . . . . . 241
10.2 Approximation of mean marking values for the example . . . . . 241

11.1 Transition details of the drawbridge control model . . . . . . . . . . 249

13.1 Improvement of marking approximation quality . . . . . . . . . . . . 281
13.2 Results comparison for simulation and approximation . . . . . . . 283
13.3 Tradeoff between speedup and result quality . . . . . . . . . . . . . . . 284
13.4 Reduction of computational complexity by using the cache . . . 285

14.1 Performance results of the communication failure model . . . . . 297

15.1 Token types (colors) of the supply chain model . . . . . . . . . . . . . 310
15.2 Influence of vehicle storage on the OTD time in days . . . . . . . . 318



360 List of Tables

16.1 Accuracy and computational effort of evaluation
techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

16.2 Results after the final iteration of the approximation
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

16.3 Motors and sensors of the rotary picker arm . . . . . . . . . . . . . . . 338
16.4 Picker arm transitions and their associated control signals . . . 338



References

1. W. van der Aalst, “Timed coloured Petri nets and their application to logis-
tics,” PhD Thesis, Eindhoven University of Technology, 1992.

2. E. Aarts and J. Korst, Simulated Annealing and Bolzmann Machines. Wiley,
1989.

3. M. Ajmone Marsan, G. Balbo, G. Chiola, G. Conte, S. Donatelli, and
G. Francheschinis, “An introduction to generalized stochastic Petri nets,”
Microelectronics and Reliability, Special Issue on Petri Nets, pp. 1–36, 1989.

4. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modelling with Generalized Stochastic Petri Nets, Series in parallel computing.
John Wiley and Sons, 1995.

5. M. Ajmone Marsan, “Stochastic Petri nets: An elementary introduction,”
in Advances in Petri Nets 1989, Lecture Notes in Computer Science,
G. Rozenberg, Ed. Springer Verlag, 1990, vol. 424, pp. 1–29.

6. M. Ajmone Marsan and G. Chiola, “On Petri nets with deterministic and
exponentially distributed firing times,” in Advances in Petri Nets 1987, Lecture
Notes in Computer Science, G. Rozenberg, Ed. Springer Verlag, 1987, vol. 266,
pp. 132–145.

7. R. Y. Al-Jaar and A. A. Desrochers, “Petri nets in automation and manufac-
turing,” in Advances in Automation and Robotics, G. N. Saridis, Ed. JAI Press,
1990, vol. 2.

8. R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, pp. 183–235, 1994.

9. R. Alur, “Timed automata,” in Proc. 11th Int. Conf. on Computer-Aided Ver-
ification, Lecture Notes in Computer Science. Springer Verlag, 1999, vol. 1633,
pp. 8–22.

10. N. Aoumeur and G. Saake, “Towards an adequate framework for specifying
and validating runtime evolving complex discrete-event systems,” in Proc. 1st
Workshop on Modeling of Objects, Components, and Agents, 2001, pp. 1–20.

11. Y. Atamna, “Definition of the model “stochastic timed well formed coloured
nets”,” in Proc. 5th Int. Workshop on Petri Nets and Performance Models,
Toulouse, 1993, pp. 24–33.
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258. C. J. Pérez-Jiménez, “Tecnicas de aproximacion de throughput en redes de
Petri estocasticas,” Ph.D. dissertation, Departamento de Informatica e Inge-
nieria de Sistemas, Universidad de Zaragoza, Spain, June 2002.
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